2,032 research outputs found

    Optimized Time Management for Declarative Workflows

    Get PDF
    Declarative process models are increasingly used since they fit better with the nature of flexible process-aware information systems and the requirements of the stakeholders involved. When managing business processes, in addition, support for representing time and reasoning about it becomes crucial. Given a declarative process model, users may choose among different ways to execute it, i.e., there exist numerous possible enactment plans, each one presenting specific values for the given objective functions (e.g., overall completion time). This paper suggests a method for generating optimized enactment plans (e.g., plans minimizing overall completion time) from declarative process models with explicit temporal constraints. The latter covers a number of well-known workflow time patterns. The generated plans can be used for different purposes like providing personal schedules to users, facilitating early detection of critical situations, or predicting execution times for process activities. The proposed approach is applied to a range of test models of varying complexity. Although the optimization of process execution is a highly constrained problem, results indicate that our approach produces a satisfactory number of suitable solutions, i.e., solutions optimal in many cases

    Enhancing declarative process models with DMN decision logic

    Get PDF
    Modeling dynamic, human-centric, non-standardized and knowledge-intensive business processes with imperative process modeling approaches is very challenging. Declarative process modeling approaches are more appropriate for these processes, as they offer the run-time flexibility typically required in these cases. However, by means of a realistic healthcare process that falls in the aforementioned category, we demonstrate in this paper that current declarative approaches do not incorporate all the details needed. More specifically, they lack a way to model decision logic, which is important when attempting to fully capture these processes. We propose a new declarative language, Declare-R-DMN, which combines the declarative process modeling language Declare-R with the newly adopted OMG standard Decision Model and Notation. Aside from supporting the functionality of both languages, Declare-R-DMN also creates bridges between them. We will show that using this language results in process models that encapsulate much more knowledge, while still offering the same flexibility

    Process mining for healthcare: Characteristics and challenges

    Get PDF
    Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Dirección de Investigación de la Vicerrectoría de Investigación de la Pontificia Universidad Católica de Chile - PUENTE [Grant No. 026/ 2021]; and Agencia Nacional de Investigación y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019–21190116, ANID-PFCHA/ Doctorado Nacional/2020–21201411]. With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-accessplan).Peer ReviewedArticle signat per 55 autors/es: Jorge Munoz-Gama (a)* , Niels Martin (b,c)* , Carlos Fernandez-Llatas (d,g)* , Owen A. Johnson (e)* , Marcos Sepúlveda (a)* , Emmanuel Helm (f)* , Victor Galvez-Yanjari (a)* , Eric Rojas (a) , Antonio Martinez-Millana (d) , Davide Aloini (k) , Ilaria Angela Amantea (l,q,r) , Robert Andrews (ab), Michael Arias (z) , Iris Beerepoot (o) , Elisabetta Benevento (k) , Andrea Burattin (ai), Daniel Capurro (j) , Josep Carmona (s) , Marco Comuzzi (w), Benjamin Dalmas (aj,ak), Rene de la Fuente (a) , Chiara Di Francescomarino (h) , Claudio Di Ciccio (i) , Roberto Gatta (ad,ae), Chiara Ghidini (h) , Fernanda Gonzalez-Lopez (a) , Gema Ibanez-Sanchez (d) , Hilda B. Klasky (p) , Angelina Prima Kurniati (al), Xixi Lu (o) , Felix Mannhardt (m), Ronny Mans (af), Mar Marcos (v) , Renata Medeiros de Carvalho (m), Marco Pegoraro (x) , Simon K. Poon (ag), Luise Pufahl (u) , Hajo A. Reijers (m,o) , Simon Remy (y) , Stefanie Rinderle-Ma (ah), Lucia Sacchi (t) , Fernando Seoane (g,am,an), Minseok Song (aa), Alessandro Stefanini (k) , Emilio Sulis (l) , Arthur H. M. ter Hofstede (ab), Pieter J. Toussaint (ac), Vicente Traver (d) , Zoe Valero-Ramon (d) , Inge van de Weerd (o) , Wil M.P. van der Aalst (x) , Rob Vanwersch (m), Mathias Weske (y) , Moe Thandar Wynn (ab), Francesca Zerbato (n) // (a) Pontificia Universidad Catolica de Chile, Chile; (b) Hasselt University, Belgium; (c) Research Foundation Flanders (FWO), Belgium; (d) Universitat Politècnica de València, Spain; (e) University of Leeds, United Kingdom; (f) University of Applied Sciences Upper Austria, Austria; (g) Karolinska Institutet, Sweden; (h) Fondazione Bruno Kessler, Italy; (i) Sapienza University of Rome, Italy; (j) University of Melbourne, Australia; (k) University of Pisa, Italy; (l) University of Turin, Italy; (m) Eindhoven University of Technology, The Netherlands; (n) University of St. Gallen, Switzerland; (o) Utrecht University, The Netherlands; (p) Oak Ridge National Laboratory, United States; (q) University of Bologna, Italy; (r) University of Luxembourg, Luxembourg; (s) Universitat Politècnica de Catalunya, Spain; (t) University of Pavia, Italy; (u) Technische Universitaet Berlin, Germany; (v) Universitat Jaume I, Spain; (w) Ulsan National Institute of Science and Technology (UNIST), Republic of Korea; (x) RWTH Aachen University, Germany; (y) University of Potsdam, Germany; (z) Universidad de Costa Rica, Costa Rica; (aa) Pohang University of Science and Technology, Republic of Korea; (ab) Queensland University of Technology, Australia; (ac) Norwegian University of Science and Technology, Norway; (ad) Universita degli Studi di Brescia, Italy; (ae) Lausanne University Hospital (CHUV), Switzerland; (af) Philips Research, the Netherlands; (ag) The University of Sydney, Australia; (ah) Technical University of Munich, Germany; (ai) Technical University of Denmark, Denmark; (aj) Mines Saint-Etienne, France; (ak) Université Clermont Auvergne, France; (al) Telkom University, Indonesia; (am) Karolinska University Hospital, Sweden; (an) University of Borås, SwedenPostprint (published version

    Process mining for healthcare: Characteristics and challenges

    Full text link
    [EN] Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Direccion de Investigacion de la Vicerrectoria de Investigacion de la Pontificia Universidad Catolica de Chile-PUENTE [Grant No. 026/2021] ; and Agencia Nacional de Investigacion y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019-21190116, ANID-PFCHA/Doctorado Nacional/2020-21201411] . With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) . The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)Munoz Gama, J.; Martin, N.; Fernández Llatas, C.; Johnson, OA.; Sepúlveda, M.; Helm, E.; Galvez-Yanjari, V.... (2022). Process mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics. 127:1-15. https://doi.org/10.1016/j.jbi.2022.10399411512

    Healthcare Process Support: Achievements, Challenges, Current Research

    Get PDF
    Healthcare organizations are facing the challenge of delivering high-quality services to their patients at affordable costs. To tackle this challenge, the Medical Informatics community targets at formalisms for developing decision-support systems (DSSs) based on clinical guidelines. At the same time, business process management (BPM) enables IT support for healthcare processes, e.g., based on workflow technology. By integrating aspects from these two fields, promising perspectives for achieving better healthcare process support arise. The perspectives and limitations of IT support for healthcare processes provided the focus of three Workshops on Process-oriented Information Systems (ProHealth). These were held in conjunction with the International Conference on Business Process Management in 2007-2009. The ProHealth workshops provided a forum wherein challenges, paradigms, and tools for optimized process support in healthcare were debated. Following the success of these workshops, this special issue on process support in healthcare provides extended papers by research groups who contributed multiple times to the ProHealth workshop series. These works address issues pertaining to healthcare process modeling, process-aware healthcare information system, workflow management in healthcare, IT support for guideline implementation and medical decision support, flexibility in healthcare processes, process interoperability in healthcare and healthcare standards, clinical semantics of healthcare processes, healthcare process patterns, best practices for designing healthcare processes, and healthcare process validation, verification, and evaluation
    • …
    corecore