3,441 research outputs found

    High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci.

    Get PDF
    Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We therefore evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report new insight into molecular processes and genome organization. We present a highly resolved differentiation cascade that exhibits coding and noncoding transcriptional alterations, transcription factor network interactions and alternative splicing events, little of which can be resolved by long-interval developmental time-courses. We describe novel short lived and cycling patterns of gene expression and dissect temporally ordered gene expression changes in response to transcription factors. We elucidate patterns in gene co-expression across the genome, describe asynchronous transcription at bidirectional promoters and functionally annotate known and novel regulatory lncRNAs. These findings highlight the complex and dynamic molecular events underlying mammalian differentiation that can only be observed though a temporally resolved time course

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    Interdependent policy instrument preferences: a two-mode network approach

    Get PDF
    In policymaking, actors are likely to take the preferences of others into account when strategically positioning themselves. However, there is a lack of research that conceives of policy preferences as an interdependent system. In order to analyse interdependencies, we link actors to their policy preferences in water protection, which results in an actor-instrument network. As actors exhibit multiple preferences, a complex two-mode network between actors and policies emerges. We analyse whether actors exhibit interdependent preference profiles given shared policy objectives or social interactions among them. By fitting an exponential random graph model to the actor-instrument network, we find considerable clustering, meaning that actors tend to exhibit preferences for multiple policy instruments in common. Actors tend to exhibit interdependent policy preferences when they are interconnected, that is, they collaborate with each other. By contrast, actors are less likely to share policy preferences when a conflict line divides them

    Model-free reconstruction of neuronal network connectivity from calcium imaging signals

    Get PDF
    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically unfeasible even in dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct approximations to network structural connectivities from network activity monitored through calcium fluorescence imaging. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time-series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the effective network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (e.g., bursting or non-bursting). We thus demonstrate how conditioning with respect to the global mean activity improves the performance of our method. [...] Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good reconstruction of the network clustering coefficient, allowing to discriminate between weakly or strongly clustered topologies, whereas on the other hand an approach based on cross-correlations would invariantly detect artificially high levels of clustering. Finally, we present the applicability of our method to real recordings of in vitro cortical cultures. We demonstrate that these networks are characterized by an elevated level of clustering compared to a random graph (although not extreme) and by a markedly non-local connectivity.Comment: 54 pages, 8 figures (+9 supplementary figures), 1 table; submitted for publicatio

    Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process

    Get PDF
    Background: Causal networks based on the vector autoregressive (VAR) process are a promising statistical tool for modeling regulatory interactions in a cell. However, learning these networks is challenging due to the low sample size and high dimensionality of genomic data. Results: We present a novel and highly efficient approach to estimate a VAR network. This proceeds in two steps: (i) improved estimation of VAR regression coefficients using an analytic shrinkage approach, and (ii) subsequent model selection by testing the associated partial correlations. In simulations this approach outperformed for small sample size all other considered approaches in terms of true discovery rate (number of correctly identified edges relative to the significant edges). Moreover, the analysis of expression time series data from Arabidopsis thaliana resulted in a biologically sensible network. Conclusion: Statistical learning of large-scale VAR causal models can be done efficiently by the proposed procedure, even in the difficult data situations prevalent in genomics and proteomics. Availability: The method is implemented in R code that is available from the authors on request

    A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression.

    Get PDF
    BACKGROUND: The analysis of gene expression from time series underpins many biological studies. Two basic forms of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal nature of the data based on a Gaussian process. RESULTS: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing that the proposed approach considerably outperforms the current state of the art. CONCLUSIONS: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we believe Gaussian processes should be a standard tool in the analysis of gene expression time series
    corecore