5,770 research outputs found

    Template-based ontology population for Smart Environments configuration

    Get PDF
    Smart Environment is one of several domains in which Semantic Web technologies are applied nowadays. Ontologies, in particular, are used as core modeling languages for representing devices, systems and environments. Developing such ontologies, that typically involve several device descriptions (individuals) and related information, i.e., individuals of classes contributing to the device model, is often done by a manual, time consuming, and error-prone approach. Flexible and semi-automatic tools are therefore needed to enhance ontology population and to enable end-users to fruitfully configure their Smart Environments without the intervention of an ontology expert. This paper presents a template based approach, which increases accuracy, ease of use, and time-effectiveness of the ontology population process by reducing the amount of user-given information of about an order of magnitude, with respect to the fully manual approach. User-required information only pertains device features (e.g., name, location, etc.) and never implies knowledge of Semantic Web technologies, thus enabling end-user configuration of smart homes and buildings. Experimental results with a prototypical implementation confirm the viability of the approach on a real-world use cas

    Complex Event Processing for City Officers: A Filter and Pipe Visual Approach

    Get PDF
    Administrators and operators of next generation cities will likely be required to exhibit a good understanding of technical features, data issues, and complex information that, up to few years ago, were quite far from day-to-day administration tasks. In the smart city era, the increased attention to data harvested from the city fosters a more informed approach to city administration, requiring involved operators to drive, direct, and orient technological processes in the city more effectively. Such an increasing need requires tools and platforms that can easily and effectively be controlled by non-technical people. In this paper, an approach for enabling "easier" composition of real-time data processing pipelines in smart cities is presented, exploiting a visual and block-based design approach, similar to the one adopted in the Scratch programming language for elementary school students. The proposed approach encompasses both a graphical editor and a sound methodology and workflow, to allow city operators to effectively design, develop, test, and deploy their own data processing pipelines. The editor and the workflow are described in the context of a pilot of the ALMANAC European project

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Services and Policies for Care at Home

    Get PDF
    It is argued that various factors including the increasingly ageing population will require more care services to be delivered to users in their own homes. Desirable characteristics of such services are outlined. The Open Services Gateway initiative has been adopted as a widely accepted framework that is particularly suitable for developing home care services. Service discovery in this context is enhanced through ontologies that achieve greater flexibility and precision in service description. A service ontology stack allows common concepts to be extended for new services. The architecture of a policy system for home care is explained. This is used for flexible creation and control of new services. The core policy language and its extension for home care are introduced, and illustrated through typical examples. Future extensions of the approach are discussed

    Smart tourist information points by combining agents, semantics and AI techniques

    Get PDF
    The tourism sector in the province of Teruel (Aragon, Spain) is increasing rapidly. Although the number of domestic and foreign tourists is continuously growing, there are some tourist attractions spread over a wide geographical area, which are only visited by a few people at specific times of the year. Additionally, having human tourist guides everywhere and speaking different languages is unfeasible. An integrated solution based on smart and interactive Embodied Conversational Agents (ECAs) tourist guides combined with ontologies would overcome this problem. This paper presents a smart tourist information points approach which gathers tourism information about Teruel, structured according to a novel lightweight ontology built on OWL (Ontology Web Language), known as TITERIA (Touristic Information of TEruel for Intelligent Agents). Our proposal, which combines TITERIA with the Maxine platform, is capable of responding appropriately to the users thanks to its Artificial Intelligence Modeling Language (AIML) database and the AI techniques added to Maxine. Preliminary results indicate that our prototype is able to inform users about interesting topics, as well as to propose other related information, allowing them to acquire a complete information about any issue. Furthermore, users can directly talk with an artificial actor making communication much more natural and closer

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring

    A semantic autonomous video surveillance system for dense camera networks in smart cities

    Get PDF
    ProducciĂłn CientĂ­ficaThis paper presents a proposal of an intelligent video surveillance system able to detect and identify abnormal and alarming situations by analyzing object movement. The system is designed to minimize video processing and transmission, thus allowing a large number of cameras to be deployed on the system, and therefore making it suitable for its usage as an integrated safety and security solution in Smart Cities. Alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. This means that the system employs a high-level conceptual language easy to understand for human operators, capable of raising enriched alarms with descriptions of what is happening on the image, and to automate reactions to them such as alerting the appropriate emergency services using the Smart City safety network
    • …
    corecore