7,367 research outputs found

    Non-isometric 3D shape registration.

    Get PDF
    3D shape registration is an important task in computer graphics and computer vision. It has been widely used in the area of film industry, 3D animation, video games and AR/VR assets creation. Manually creating the 3D model of a character from scratch is tedious and time consuming, and it can only be completed by professional trained artists. With the development of 3D geometry acquisition technology, it becomes easier and cheaper to capture high-resolution and highly detailed 3D geometries. However, the scanned data are often incomplete or noisy and therefore cannot be employed directly. To deal with the above two problems, one typical and efficient solution is to deform an existing high-quality model (template) to fit the scanned data (target). Shape registration as an essential technique to do so has been arousing intensive attention. In last decades, various shape registration approaches have been proposed for accurate template fitting. However, there are still some remaining challenges. It is well known that the template can be largely different with the target in respect of size and pose. With the large (usually non-isometric) deformation between them, the shear distortion can easily occur, which may lead to poor results, such as degenerated triangles, fold-overs. Before deforming the template towards the target, reliable correspondences between them should be found first. Incorrect correspondences give the wrong deformation guidance, which can also easily produce fold-overs. As mentioned before, the target always comes with noise. This is the part we want to filter out and try not to fit the template on it. Hence, non-isometric shape registration robust to noise is highly desirable in the scene of geometry modelling from the scanned data. In this PhD research, we address existing challenges in shape registration, including how to prevent the deformation distortion, how to reduce the foldover occurrence and how to deal with the noise in the target. Novel methods including consistent as-similar as-possible surface deformation and robust Huber-L1 surface registration are proposed, which are validated through experimental comparison with state-of-the-arts. The deformation technique plays an important role in shape registration. In this research, a consistent as similar-as-possible (CASAP) surface deformation approach is proposed. Starting from investigating the continuous deformation energy, we analyse the existing term to make the discrete energy converge to the continuous one, whose property we called as energy consistency. Based on the deformation method, a novel CASAP non-isometric surface registration method is proposed. The proposed registration method well preserves the angles of triangles in the template surface so that least distortion is introduced during the surface deformation and thus reduce the risk of fold-over and self-intersection. To reduce the noise influence, a Huber-L1 based non-isometric surface registration is proposed, where a Huber-L1 regularized model constrained on the transformation variation and position difference. The proposed method is robust to noise and produces piecewise smooth results while still preserving fine details on the target. We evaluate and validate our methods through extensive experiments, whose results have demonstrated that the proposed methods in this thesis are more accurate and robust to noise in comparison of the state-of-the arts and enable us to produce high quality models with little efforts

    Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging

    Full text link
    Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance on modern GPUs in interactive applications. In this work, we propose a new language, Opt (available under http://optlang.org), for writing these objective functions over image- or graph-structured unknowns concisely and at a high level. Our compiler automatically transforms these specifications into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-Marquardt methods. Opt can generate different variations of the solver, so users can easily explore tradeoffs in numerical precision, matrix-free methods, and solver approaches. In our results, we implement a variety of real-world graphics and vision applications. Their energy functions are expressible in tens of lines of code, and produce highly-optimized GPU solver implementations. These solver have performance competitive with the best published hand-tuned, application-specific GPU solvers, and orders of magnitude beyond a general-purpose auto-generated solver

    Non-Rigid Puzzles

    Get PDF
    Shape correspondence is a fundamental problem in computer graphics and vision, with applications in various problems including animation, texture mapping, robotic vision, medical imaging, archaeology and many more. In settings where the shapes are allowed to undergo non-rigid deformations and only partial views are available, the problem becomes very challenging. To this end, we present a non-rigid multi-part shape matching algorithm. We assume to be given a reference shape and its multiple parts undergoing a non-rigid deformation. Each of these query parts can be additionally contaminated by clutter, may overlap with other parts, and there might be missing parts or redundant ones. Our method simultaneously solves for the segmentation of the reference model, and for a dense correspondence to (subsets of) the parts. Experimental results on synthetic as well as real scans demonstrate the effectiveness of our method in dealing with this challenging matching scenario

    MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging -- design, implementation and application on the example of DCE-MRI

    Full text link
    Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in DCE MRI/CT, ADC calculations and IVIM modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow. We present a framework for medical image fitting tasks that is included in MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth. Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.Comment: 31 pages, 11 figures URL: http://mitk.org/wiki/MITK-ModelFi

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Huber- L1 -based non-isometric surface registration

    Get PDF
    © 2019, The Author(s). Non-isometric surface registration is an important task in computer graphics and computer vision. It, however, remains challenging to deal with noise from scanned data and distortion from transformation. In this paper, we propose a Huber-L 1 -based non-isometric surface registration and solve it by the alternating direction method of multipliers. With a Huber-L 1 -regularized model constrained on the transformation variation and position difference, our method is robust to noise and produces piecewise smooth results while still preserving fine details on the target. The introduced as-similar-as-possible energy is able to handle different size of shapes with little stretching distortion. Extensive experimental results have demonstrated that our method is more accurate and robust to noise in comparison with the state-of-the-arts

    Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images: data from the Osteoarthritis Initiative

    Get PDF
    OBJECTIVE: To validate an automatic scheme for the segmentation and quantitative analysis of the medial meniscus (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee
    corecore