2,673 research outputs found

    Low Voltage Floating Gate MOS Transistor Based Four-Quadrant Multiplier

    Get PDF
    This paper presents a four-quadrant multiplier based on square-law characteristic of floating gate MOSFET (FGMOS) in saturation region. The proposed circuit uses square-difference identity and the differential voltage squarer proposed by Gupta et al. to implement the multiplication function. The proposed multiplier employs eight FGMOS transistors and two resistors only. The FGMOS implementation of the multiplier allows low voltage operation, reduced power consumption and minimum transistor count. The second order effects caused due to mobility degradation, component mismatch and temperature variations are discussed. Performance of the proposed circuit is verified at ±0.75 V in TSMC 0.18 µm CMOS, BSIM3 and Level 49 technology by using Cadence Spectre simulator

    Design of a Wide-Swing Cascode Beta Multiplier Current Reference

    Get PDF
    This thesis presents a study of the design of a wide-swing, cascode β multiplier current reference to be used as a biasing circuit. The current reference has been fabricated in a 0.5mm CMOS technology. First, a review of wide-swing cascode current mirrors and current-source self-biasing is covered. Then, the process of designing a current reference that is both wide-swing and has high output resistance is presented. Simulation and measurement results from the current reference are detailed. Improvements upon the current reference are also suggested

    Nanopower CMOS transponders for UHF and microwave RFID systems

    Get PDF
    At first, we present an analysis and a discussion of the design options and tradeoffs for a passive microwave transponder. We derive a set of criteria for the optimization of the voltage multiplier, the power matching network and the backscatter modulator in order to optimize the operating range. In order to match the strictly power requirements, the communication protocol between transponder and reader has been chosen in a convenient way, in order to make the architecture of the passive transponder very simple and then ultra-low-power. From the circuital point of view, the digital section has been implemented in subthreshold CMOS logic with very low supply voltage and clock frequency. We present different solutions to supply power to the transponder, in order to keep the power consumption in the deep sub-µW regime and to drastically reduce the huge sensitivity of the subthreshold logic to temperature and process variations. Moreover, a low-voltage and low-power EEPROM in a standard CMOS process has been implemented. Finally, we have presented the implementation of the entire passive transponder, operating in the UHF or microwave frequency range

    Frequency Synthesizer Architectures for UWB MB-OFDM Alliance Application

    Get PDF

    Semiconductor-technology exploration : getting the most out of the MOST

    Get PDF

    Silicon-on-Insulator Power Management Integrated Circuit for Thin-Film Solid-State Lithium-Ion Micro-Batteries

    Get PDF
    This thesis presents the design and implementation of a power management integrated circuit (IC) that is capable of both current and voltage charging thin-film, solid-state, lithium-ion micro-batteries. The power management system has been fabricated using a single-poly, 0.35-ìm, partially-depleted, silicon-on-insulator process (PD-SOI). The system contains a temperature stable current charger (current generator and a 4-bit current-mode DAC), a regulated voltage supply (voltage amplifier), and a voltage monitoring circuit (2-bit flash ADC). Experimental results of the first version of the power management system show proper functionality was obtained. The current charger produced a 2% worst-case variation in output current over the temperature range 0–100°C. The regulated voltage output was measured to be 4.4 V and the digital outputs of the flash ADC transitioned at 3.45 and 4.76 V
    • …
    corecore