199 research outputs found

    Energy-Efficient and Reliable Computing in Dark Silicon Era

    Get PDF
    Dark silicon denotes the phenomenon that, due to thermal and power constraints, the fraction of transistors that can operate at full frequency is decreasing in each technology generation. Moore’s law and Dennard scaling had been backed and coupled appropriately for five decades to bring commensurate exponential performance via single core and later muti-core design. However, recalculating Dennard scaling for recent small technology sizes shows that current ongoing multi-core growth is demanding exponential thermal design power to achieve linear performance increase. This process hits a power wall where raises the amount of dark or dim silicon on future multi/many-core chips more and more. Furthermore, from another perspective, by increasing the number of transistors on the area of a single chip and susceptibility to internal defects alongside aging phenomena, which also is exacerbated by high chip thermal density, monitoring and managing the chip reliability before and after its activation is becoming a necessity. The proposed approaches and experimental investigations in this thesis focus on two main tracks: 1) power awareness and 2) reliability awareness in dark silicon era, where later these two tracks will combine together. In the first track, the main goal is to increase the level of returns in terms of main important features in chip design, such as performance and throughput, while maximum power limit is honored. In fact, we show that by managing the power while having dark silicon, all the traditional benefits that could be achieved by proceeding in Moore’s law can be also achieved in the dark silicon era, however, with a lower amount. Via the track of reliability awareness in dark silicon era, we show that dark silicon can be considered as an opportunity to be exploited for different instances of benefits, namely life-time increase and online testing. We discuss how dark silicon can be exploited to guarantee the system lifetime to be above a certain target value and, furthermore, how dark silicon can be exploited to apply low cost non-intrusive online testing on the cores. After the demonstration of power and reliability awareness while having dark silicon, two approaches will be discussed as the case study where the power and reliability awareness are combined together. The first approach demonstrates how chip reliability can be used as a supplementary metric for power-reliability management. While the second approach provides a trade-off between workload performance and system reliability by simultaneously honoring the given power budget and target reliability

    Application analyses of ultra-low-energy processor

    Get PDF
    Abstract. Low energy consumption has become a critical design feature in modern systems. Internet of Things, wearables and other portable devices create increasing demand for low power design where device size is dictated by battery and low energy means longer battery life and smaller physical size. These are crucial features for wearables and especially implantable medical devices. There are several low power and energy efficient techniques which are applied at different abstraction levels of the system design. A technique usually utilizing software control and hardware features is DVFS (dynamic voltage and frequency scaling), a dynamic power management technique which decreases processor clock frequency and supply voltage. Reduction in energy consumption is achieved with the cost of reduced performance. One of the questions with DVFS is how the execution frequencies are defined. This thesis presents a method for frequency optimization for applications executed on a single core processor. Execution trace data is used to profile the application. FreeRTOS operating system is used although tracing can be implemented with any real-time operating system executing tasks as separate threads. Based on profiling and user-defined data, task execution frequencies are defined assuming that execution time scales linearly with the frequency. A near-threshold ARM Cortex M3 with integrated power management and phase-locked loop is used for measurements. The measurements show that energy savings can be achieved without affecting correct application execution. However, the reduction in energy consumption depends highly on the system used and the application execution profile. Iterative testing and frequency optimization are required to ensure adequate performance. For energy efficiency optimization, energy consumption needs to be considered in every phase of the design.Matalan energiankulutuksen prosessorin sovellusanalyysi. Tiivistelmä. Matala energiankulutus on keskeinen ominaisuus nykyisten järjestelmien suunnittelussa. Esineiden Internet ja puettava tietotekniikka luovat tarpeen yhä pienemmälle energiankulutukselle. Laitteen koko määräytyy akun koon mukana. Matala tehonkulutus tarkoittaa pidempää akunkestoa ja pienempää fyysista kokoa. Nämä ovat ratkaisevia ominaisuuksia, erityisesti implantoitaville lääkinnällisille laitteille. Energiatehokkuuteen ja matalaan energiankulutukseen tähtääviä menetelmiä voidaan soveltaa eri abstraktiotasoilla järjestelmän suunnittelussa. Dynaaminen jännitteen ja taajuuden skaalaus on menetelmä, millä pyritään alentamaan dynaamista tehonkulutusta säätelemällä käyttöjännitettä ja kellotaajuutta. Suorituskyvyn kustannuksella on mahdollista saavuttaa matalampi energiankulutus. Keskeinen kysymys on, miten käytettävät kellotaajuudet tulee määritellä. Tässä diplomityössä kehitetään menetelmä, jota voidaan käyttää optimaalisten kellotaajuuksien määrittämiseen. Suorituksen aikana kerättävää dataa käytetään ohjelman profilointiin ja optimointimallin luomiseen. Suoritusdatan kerääminen on kehitetty FreeRTOS-käyttöjärjestelmälle, mutta periaate on sovellettavissa käyttöjärjestelmille, joissa tehtävät suoritetaan erillisissä prosesseissa. Profilointidata hyödynnetään yhdessä käyttäjän syöttämän data kanssa kellotaajuuksien määrittämiseen olettaen, että suoritusaika skaalautuu lineaarisesti kellotaajuden kanssa. Suositustaajuudet määritetään jokaiselle prosessille erikseen. Mittauksissa käytettiin ARM Cortex M3 prosessoria integroidulla tehonhallinnalla ja vaihelukolla. Mittaustulokset osoittavat, että energiankulutusta voidaan pienentää vaikuttamatta sovelluksen virheettömään suoritukseen. Saavutettava hyöty tehonkulutuksessa on riippuvainen käytettävästä järjestelmästä ja sovelluksen suoritusprofiilista. Riittävä suorituskyky täytyy varmistaa iteratiivisella testaamisella ja kellotaajuuksien optimoinnilla. Tehonkulutus ja energiatehokkuus täytyy huomioida suunnitteluprosessin jokaisella osa-alueella, jotta parhaat tulokset saavutetaan

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    A survey of system level power management schemes in the dark-silicon era for many-core architectures

    Get PDF
    Power consumption in Complementary Metal Oxide Semiconductor (CMOS) technology has escalated to a point that only a fractional part of many-core chips can be powered-on at a time. Fortunately, this fraction can be increased at the expense of performance through the dark-silicon solution. However, with many-core integration set to be heading towards its thousands, power consumption and temperature increases per time, meaning the number of active nodes must be reduced drastically. Therefore, optimized techniques are demanded for continuous advancement in technology. Existing efforts try to overcome this challenge by activating nodes from different parts of the chip at the expense of communication latency. Other efforts on the other hand employ run-time power management techniques to manage the power performance of the cores trading-off performance for power. We found out that, for a significant amount of power to saved and high temperature to be avoided, focus should be on reducing the power consumption of all the on-chip components. Especially, the memory hierarchy and the interconnect. Power consumption can be minimized by, reducing the size of high leakage power dissipating elements, turning-off idle resources and integrating power saving materials

    Application-specific thermal management of computer systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adaptive Knobs for Resource Efficient Computing

    Get PDF
    Performance demands of emerging domains such as artificial intelligence, machine learning and vision, Internet-of-things etc., continue to grow. Meeting such requirements on modern multi/many core systems with higher power densities, fixed power and energy budgets, and thermal constraints exacerbates the run-time management challenge. This leaves an open problem on extracting the required performance within the power and energy limits, while also ensuring thermal safety. Existing architectural solutions including asymmetric and heterogeneous cores and custom acceleration improve performance-per-watt in specific design time and static scenarios. However, satisfying applications’ performance requirements under dynamic and unknown workload scenarios subject to varying system dynamics of power, temperature and energy requires intelligent run-time management. Adaptive strategies are necessary for maximizing resource efficiency, considering i) diverse requirements and characteristics of concurrent applications, ii) dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal and energy constraints. This dissertation proposes such adaptive techniques for efficient run-time resource management to maximize performance within fixed budgets under unknown and dynamic workload scenarios. Resource management strategies proposed in this dissertation comprehensively consider application and workload characteristics and variable effect of power actuation on performance for pro-active and appropriate allocation decisions. Specific contributions include i) run-time mapping approach to improve power budgets for higher throughput, ii) thermal aware performance boosting for efficient utilization of power budget and higher performance, iii) approximation as a run-time knob exploiting accuracy performance trade-offs for maximizing performance under power caps at minimal loss of accuracy and iv) co-ordinated approximation for heterogeneous systems through joint actuation of dynamic approximation and power knobs for performance guarantees with minimal power consumption. The approaches presented in this dissertation focus on adapting existing mapping techniques, performance boosting strategies, software and dynamic approximations to meet the performance requirements, simultaneously considering system constraints. The proposed strategies are compared against relevant state-of-the-art run-time management frameworks to qualitatively evaluate their efficacy

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing
    corecore