2,936 research outputs found

    Understanding How Agricultural Intensification Impacts Ring-Necked Pheasant Distribution and Survival in Eastern South Dakota

    Get PDF
    Historically, pheasants (Phasianus colchicus) have thrived in South Dakota in conjunction with successful land retirement programs or early farming practices through the 1950s, which created interspersions of agriculture and native landscapes that were ideal for pheasants. Recently, the Prairie Pothole ecosystem has undergone rapid agroeconomic expansion, effectively reducing ideal interspersions of native prairie and cropland into agriculturally homogeneous landscapes. Indices of pheasant abundance have suggested persistent population declines since 2008, raising concerns regarding landscape suitability. Our goal was to understand how agriculture intensification impacts pheasant ecology. The objectives were to: 1) estimate overwinter hen probability of survival, resource selection, and mortality risks associated with landscape features; 2) determine pheasant abundance as a function of remotely derived landscape composition and vegetative phenology; and 3) implement low-cost Arduino GPS trackers into our ring-necked pheasant study to improve fine-scale data collection. To accomplish these goals, we captured, collared, and tracked 100 female pheasants annually from December through March in each of three years (2016–2019). Overall, we captured 321 females and recorded 110 mortalities. We implemented low-cost GPS trackers on 35 individuals, resulting in 407 VHF locations and 1,574 GPS locations. This was a 287% increase in data density at only 23% increase in cost. We modeled weekly probability of survival and Cox proportional-hazard cause-specific mortality rates associated with landscape features. To understand pheasant distribution, we surveyed for and modeled pheasant abundance and distribution seasonally as a function of landscape composition and intraannual differences in vegetation phenology. Overwinter survival of pheasants (0.66) was highly influenced by snow depth. Pheasants using harvested fields experienced a 421% increase in risk of raptor predation. Additionally, pheasants using emergent wetlands experienced a 58% lower risk of weather mortality. Our distribution model demonstrated that proportion of Conservation Reserve Program grasslands, dormant wetlands, and 30- 40% row-crop agriculture within 1.6 km2 positively influenced pheasant abundance. Alternatively, pheasants were negatively associated with proportion of forests. Agricultural intensification is projected to continue reducing valuable concealment, grassland, and emergent wetland landscapes. As native perennial vegetation is critical to both pheasant abundance and winter survival, large-scale conservation efforts are critical to pheasant population viability. Innovative conservation solutions supplementing current farm bill policies may improve conservation adoption thereby improving pheasant abundance and overwinter survival

    Soil moisture data acquisition

    Get PDF
    Presented at Irrigation district sustainability - strategies to meet the challenges: USCID irrigation district specialty conference held on June 3-6, 2009 in Reno, Nevada.Includes bibliographical references.The water requirements of crops are dependent on evapotranspiration (ET), soil chemistry, and the crop's maximum allowable depletion (MAD). Direct measurements of root zone soil moisture, water application along with published ET values and soil textures, can be used in a soil water balance model that can significantly optimize irrigation efficiency. Over the past five years, advancements in computer microprocessors, memory, and software development tools has improved data acquisition methods and made data acquisition system integration more reliable and more cost effective. We discuss here an irrigation scheduling method based on a volumetric soil moisture balance model and data acquisition

    USCID water management conference

    Get PDF
    Presented at Meeting irrigation demands in a water-challenged environment: SCADA and technology: tools to improve production: a USCID water management conference held on September 28 - October 1, 2010 in Fort Collins, Colorado.Includes bibliographical references.The Colorado Satellite-Linked Water Resources Monitoring System: 25 years later -- Using state water law for efficient water use in the West -- On-farm strategies for deficit or limited irrigation to maximize operational profit potential in Colorado's South Platte Basin -- Economics of groundwater management alternatives in the Republican Basin -- Effects of policies governing water reuse on agricultural crops -- Flow calibration of the Bryan Canal radial gate at the United Irrigation District -- Considering canal pool resonance in controller design -- Synthetic canal lining evaluation project -- South Platte Ditch Company: demonstration flow monitoring and data collection project -- The case for ditch-wide water rights analysis in Colorado -- Bore wells: a boon for tail end users -- Irrigation efficiency and water users' performance in water management: a case study on the Heran distributary, Sanghar, Sindh, Pakistan -- Initiating SCADA projects in irrigation districts -- Use of GIS as a real time decision support system for irrigation districts -- Interaction of Advanced Scientific Irrigation Management (ASIM) with I-SCADA system for efficient and sustainable production of fiber on 10,360 hectares -- Improving irrigation system performance in the Middle Rio Grande through scheduled water delivery -- Cost-effective SCADA development for irrigation districts: a Nebraska case study -- Accomplishments from a decade of SCADA implementation in Idaho's Payette Valley -- Critical success factors for large scale automation experiences from 10,000 gates -- Mapping ET in southeastern Colorado using a surface aerodynamic temperature model -- Alfalfa crop coefficients developed using a weighing lysimeter in southeast Colorado -- Turfgrass ET from small lysimeters in northeast Colorado -- Monitoring turf water status with infrared thermometry -- Training tool for on-farm water management using heuristic simulation software -- Water production functions for high plains crops -- Assessment of economic and hydrologic impacts of reduced surface water supply for irrigation via remote sensing -- Developing corn regional crop coefficients using a satellite-based energy balance model (ReSET) in the South Platte River area of Colorado

    SCADA and related technologies

    Get PDF
    Presented at SCADA and related technologies for irrigation district modernization, II: a USCID water management conference held on June 6-9, 2007 in Denver, Colorado.SCADA systems in irrigation districts have focused on remote monitoring and remote control. In many districts, the remote control is manual, but in others the automation of structures is enabled through the usage of distributed control for the automation of individual structures. This paper presents the concept of an expanded, "umbrella" SCADA system that will perform the standard functions of remote control and remote monitoring, and will also incorporate information flow in the field for operators. The umbrella SCADA system will mesh the equipment-equipment information into an equipment-program-personnel network

    SCADA and related technologies

    Get PDF
    Presented at SCADA and related technologies for irrigation district modernization, II: a USCID water management conference held on June 6-9, 2007 in Denver, Colorado.Northern Water (Northern Colorado Water Conservancy District) conducted field demonstrations and comparisons of flow monitoring equipment at 18 canal and ditch sites in the lower South Platter River Basin during the 2006 irrigation season. Equipment included data loggers from 8 different manufacturers, 16 different models of water level sensors from 12 manufacturers, and 4 different types of telemetry from 7 manufacturers. The data loggers that were demonstrated included four models of single-sensor with integrated data logger, four models of programmable multi-sensor data logger, and one model of basic, low-cost data logger without telemetry. Relative equipment costs for each data logger system are summarized in Table 6. The water level sensors tested included submersible pressure transducers, optical shaft encoders, ultrasonic distance sensors, bubbler level sensor, float and pulley with potentiometer, buoyancy sensor, and a laser distance sensor. Bench checks of sensor calibrations were accomplished by Northern Water staff before field installation, and again at the end of the irrigation season. Observed sensor accuracy was compared to that expected from manufacturer specifications. The telemetry systems tested in the field included license-free spread-spectrum radios from four manufacturers, licensed radio modems in the 450 MHz range, satellite radio modems to a web server, and cdma modems with static IP addresses. Increased mast height and high gain directional antenna improved radio telemetry as expected. Additionally, operational files were utilized to document telemetry performance when available. The purpose and intent of the equipment demonstration and comparison was not to identify a single best data logger, sensor, and/or telemetry system. Each has different features and strengths, as well as varying costs. For each specific flow monitoring application, different equipment may be preferred or better suited than other equipment. However, the 2006 demonstration and comparison should provide a reference point for those seeking to become more knowledgeable in equipment selection while avoiding unpleasant surprises

    Proceedings from the 1992 national conference

    Get PDF
    Presented at Irrigation and water resources in the 1990's: proceedings from the 1992 national conference held on October 5-7, 1992 in Phoenix, Arizona.Includes bibliographical references.Sponsored by U.S. Committee on Irrigation and Drainage.Interdisciplinary teams for assessing the performance of irrigated agriculture systems -- Putah South Canal remote acoustic water level monitoring and flow measurement -- Decentralized constant-volume control of irrigation canals -- Field manufacture and application of reinforced plastic canal and pipe linings -- Improving channel maintenance methods for Egypt's irrigation systems -- Routing flood water through an irrigation delivery system -- Experience with flexible schedules and automation on pilot projects -- Canal linings used by the Bureau of Reclamation with emphasis on rehabilitation -- The California Farm Water Coalition: telling thirsty Californians why agriculture needs water -- Institutional framework and challenges in management of agricultural water use in South Florida -- Technology transfer lessons from a U.S. water district -- Management of water conservation through irrigation system modernization and rehabilitation -- Artificial recharge of groundwater -- Long-term storage through indirect recharge -- Mitigating agricultural impacts on groundwater through desalination -- Agriculture's impact on water resources in Eastern Europe: Bulgaria, Hungary, and Romania -- How probiotic fertilizers improve irrigation efficiency, buffer salts, and reduce nitrate infiltration into groundwater -- Drought, supply shortages and E.S.A.: can the farmer survive? -- Avoiding pitfalls in canal automation -- AZSCHED computer software for irrigation scheduling -- Determination of irrigated crops consumptive water use by remote sensing and GIS techniques for river basins -- GIS and conjunctive use for irrigated agriculture -- Mapping technology in the '90's for GIS applications to irrigation and drainage
    corecore