3,792 research outputs found

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis of Nuclear Desalination Systems

    Get PDF
    Fault diagnosis of sensors, devices, and equipment is an important topic in the nuclear industry for effective and continuous operation of nuclear power plants. All the fault diagnostic approaches depend critically on the sensors that measure important process variables. Whenever a process encounters a fault, the effect of the fault is propagated to some or all the process variables. The ability of the sensor network to detect and isolate failure modes and anomalous conditions is crucial for the effectiveness of a fault detection and isolation (FDI) system. However, the emphasis of most fault diagnostic approaches found in the literature is primarily on the procedures for performing FDI using a given set of sensors. Little attention has been given to actual sensor allocation for achieving the efficient FDI performance. This dissertation presents a graph-based approach that serves as a solution for the optimization of sensor placement to ensure the observability of faults, as well as the fault resolution to a maximum possible extent. This would potentially facilitate an automated sensor allocation procedure. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data, and to fit a hyper-plane to the data. The fault directions for different fault scenarios are obtained from the prediction errors, and fault isolation is then accomplished using new projections on these fault directions. The effectiveness of the use of an optimal sensor set versus a reduced set for fault detection and isolation is demonstrated using this technique. Among a variety of desalination technologies, the multi-stage flash (MSF) processes contribute substantially to the desalinating capacity in the world. In this dissertation, both steady-state and dynamic simulation models of a MSF desalination plant are developed. The dynamic MSF model is coupled with a previously developed International Reactor Innovative and Secure (IRIS) model in the SIMULINK environment. The developed sensor placement design and fault diagnostic methods are illustrated with application to the coupled nuclear desalination system. The results demonstrate the effectiveness of the newly developed integrated approach to performance monitoring and fault diagnosis with optimized sensor placement for large industrial systems

    Robust Odorant Recognition in Biological and Artificial Olfaction

    Get PDF
    Accurate detection and identification of gases pose a number of challenges for chemical sensory systems. The stimulus space is enormous; volatile compounds vary in size, charge, functional groups, and isomerization among others. Furthermore, variability arises from intrinsic (poisoning of the sensors or degradation due to aging) and extrinsic (environmental: humidity, temperature, flow patterns) sources. Nonetheless, biological olfactory systems have been refined over time to overcome these challenges. The main objective of this work is to understand how the biological olfactory system deals with these challenges, and translate them to artificial olfaction to achieve comparable capabilities. In particular, this thesis focuses on the design and computing mechanisms that allow a relatively simple invertebrate olfactory system to robustly recognize odorants even though the sensory neurons inputs may vary due to the identified intrinsic, or extrinsic factors. In biological olfaction, signal processing in the central circuits is largely shielded from the variations in the periphery arising from the constant replacement of older olfactory sensory neurons with newer ones. Inspired by this design principle, we developed an analytical method where the operation of a temperature programmed chemiresistor is treated akin to a mathematical input/output (I/O) transform. Results show that the I/O transform is unique for each analyte-transducer combination, robust with respect to sensor aging, and is highly reproducible across sensors of equal manufacture. This enables decoupling of the signal processing algorithms from the chemical transducer, and thereby allows seamless replacement of sensor array, while the signal processing approach was kept a constant. This is a key advance necessary for achieving long-term, non-invasive chemical sensing. Next, we explored how the biological system maintains invariance while environmental conditions, particularly with respect to changes in humidity levels. At the sensory level, odor-evoked responses to odorants did not vary with changes in humidity levels, however, the spontaneous activity varied significantly. Nevertheless, in the central antennal lobe circuits, ensembles of projection neurons robustly encoded information about odorant identity and intensity irrespective of the humidity levels. Interestingly, variations in humidity levels led to variable compression of intensity information which was carried forward to behavior. Taken together, these results indicate how the influence of humidity is diminished by central neural circuits in the biological olfactory system. Finally, we explored a potential biomedical application where a robust chemical sensing approach will be immensely useful: non-invasive assay for malaria diagnosis based on exhaled breath analysis. We developed a method to screen gas chromatography/mass spectroscopy (GC/MS) traces of human breath and identified 6 compounds that have abundance changes in malaria infected patients and can potentially serve as biomarkers in exhaled breath for their diagnosis. We will conclude with a discussion of on-going efforts to develop a non-invasive solution for diagnosing malaria based on breath volatiles. In sum, this work seeks to understand the basis for robust odor recognition in biological olfaction and proposes bioinspired and statistical solutions for achieving the same abilities in artificial chemical sensing systems

    Monitoring and analysis of reinforced concrete plate-column structure under room temperature and fire based on acoustic emission

    Get PDF
    This paper attempts to disclose the damage mechanism of reinforced concrete plate-column structure under room temperature and fire. Several tests were carried out to record the law of crack development on the plate surface under room temperature. The infrared detection technology was adopted to observe how cracks develop under fire. The acoustic emission (AE) signals at different positions of the specimen were monitored by the AE techniques. Coupled with the macroscopic test phenomena, several characteristic parameters collected by the AE system, namely, cumulative number of events, event rate, energy rate and b-value, were analyzed in details. The results show that: the cumulative number of events was active in the loading, heating and cooling stages; the crack density and the change of internal forces could be derived from the trend of event rate; the local energy changes of the specimen could be deciphered from the curves of energy rate and b-value, making it possible to judge if a component has reached the failure state; the specimen suffered the most severe damages, when the AE parameters suddenly changed; AE monitoring enables the early warning of fire to reinforced concrete plate-column structure; infrared detection technology is suitable for real-time monitoring of crack development under high temperature.      &nbsp

    NASA Tech Briefs, October 2010

    Get PDF
    Topics covered include: Hybrid Architecture Active Wavefront Sensing and Control; Carbon-Nanotube-Based Chemical Gas Sensor; Aerogel-Positronium Technology for the Detection of Small Quantities of Organic and/or Toxic Materials; Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode; Inductive Non-Contact Position Sensor; High-Temperature Surface-Acoustic-Wave Transducer; Grid-Sphere Electrodes for Contact with Ionospheric Plasma; Enabling IP Header Compression in COTS Routers via Frame Relay on a Simplex Link; Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications; Robust Optimization Design Algorithm for High-Frequency TWTs; Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain; Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space; BGen: A UML Behavior Network Generator Tool; Platform for Post-Processing Waveform-Based NDE; Electrochemical Hydrogen Peroxide Generator; Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures; Process to Create High-Fidelity Lunar Dust Simulants; Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives; InGaP Heterojunction Barrier Solar Cells; Straight-Pore Microfilter with Efficient Regeneration; Determining Shear Stress Distribution in a Laminate; Self-Adjusting Liquid Injectors for Combustors; Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft; Tele-Robotic ATHLETE Controller for Kinematics - TRACK; Three-Wheel Brush-Wheel Sampler; Heterodyne Interferometer Angle Metrology; Aligning Astronomical Telescopes via Identification of Stars; Generation of Optical Combs in a WGM Resonator from a Bichromatic Pump; Large-Format AlGaN PIN Photodiode Arrays for UV Images; Fiber-Coupled Planar Light-Wave Circuit for Seed Laser Control in High Spectral Resolution Lidar Systems; On Calculating the Zero-Gravity Surface Figure of a Mirror; Optical Modification of Casimir Forces for Improved Function of Micro- and Nano-Scale Devices; Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems; Core and Off-Core Processes in Systems Engineering; Digital Reconstruction Supporting Investigation of Mishaps; and Template Matching Approach to Signal Prediction

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Applications of aerospace technology to petroleum extraction and reservoir engineering

    Get PDF
    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology

    NASA Tech Briefs, November 2005

    Get PDF
    Topics covered include: Laser System for Precise, Unambiguous Range Measurements; Flexible Cryogenic Temperature and Liquid-Level Probes; Precision Cryogenic Dilatometer; Stroboscopic Interferometer for Measuring Mirror Vibrations; Some Improvements in H-PDLCs; Multiple-Bit Differential Detection of OQPSK; Absolute Position Encoders With Vertical Image Binning; Flexible, Carbon-Based Ohmic Contacts for Organic Transistors; GaAs QWIP Array Containing More Than a Million Pixels; AutoChem; Virtual Machine Language; Two-Dimensional Ffowcs Williams/Hawkings Equation Solver; Full Multigrid Flow Solver; Doclet To Synthesize UML; Computing Thermal Effects of Cavitation in Cryogenic Liquids; GUI for Computational Simulation of a Propellant Mixer; Control Program for an Optical-Calibration Robot; SQL-RAMS; Distributing Data from Desktop to Hand-Held Computers; Best-Fit Conic Approximation of Spacecraft Trajectory; Improved Charge-Transfer Fluorescent Dyes; Stability-Augmentation Devices for Miniature Aircraft; Tool Measures Depths of Defects on a Case Tang Joint; Two Heat-Transfer Improvements for Gas Liquefiers; Controlling Force and Depth in Friction Stir Welding; Spill-Resistant Alkali-Metal-Vapor Dispenser; A Methodology for Quantifying Certain Design Requirements During the Design Phase; Measuring Two Key Parameters of H3 Color Centers in Diamond; Improved Compression of Wavelet-Transformed Images; NASA Interactive Forms Type Interface - NIFTI; Predicting Numbers of Problems in Development of Software; Hot-Electron Photon Counters for Detecting Terahertz Photons; Magnetic Variations Associated With Solar Flares; and Artificial Intelligence for Controlling Robotic Aircraft
    corecore