25 research outputs found

    Poster Abstract: Temperature Hints for Sensornet Routing

    Get PDF
    ABSTRACT Real-world experiments have shown that the transmission power and the received signal strength of low-power radio transceivers used in sensornets decrease when temperature increases. We analyze how this phenomenon affects the network layer, and find that temperature fluctuations may cause undesirable behavior by sensornet routing protocols such as CTP and RPL. Furthermore, we present an approach to make these protocols robust to temperature fluctuations by augmenting the ETX link metric with temperature hints

    Mitigating Radio Interference in Large IoT Networks through Dynamic CCA Adjustment

    Get PDF
    The performance of low-power wireless sensor networks used to build Internet of Things applications often suffers from radio interference generated by co-located wireless devices or from jammers maliciously placed in their proximity. As IoT devices typically operate in unsupervised large-scale installations, and as radio interference is typically localized and hence affects only a portion of the nodes in the network, it is important to give low-power wireless sensors and actuators the ability to autonomously mitigate the impact of surrounding interference. In this paper we present our approach DynCCA, which dynamically adapts the clear channel assessment threshold of IoT devices to minimize the impact of malicious or unintentional interference on both network reliability and energy efficiency. First, we describe how varying the clear channel assessment threshold at run-time using only information computed locally can help to minimize the impact of unintentional interference from surrounding devices and to escape jamming attacks. We then present the design and implementation of DynCCA on top of ContikiMAC and evaluate its performance on wireless sensor nodes equipped with IEEE 802.15.4 radios. Our experimental investigation shows that the use of DynCCA in dense IoT networks can increase the packet reception rate by up to 50% and reduce the energy consumption by a factor of 4

    A Survey on Facilities for Experimental Internet of Things Research

    Get PDF
    International audienceThe initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged and uniquelly identified by RFID transponders. However, the concept has grown into multiple dimensions, encompassing sensor networks able to provide real-world intelligence and goal-oriented collaboration of distributed smart objects via local networks or global interconnections such as the Internet. Despite significant technological advances, difficulties associated with the evaluation of IoT solutions under realistic conditions, in real world experimental deployments still hamper their maturation and significant roll out. In this article we identify requirements for the next generation of the IoT experimental facilities. While providing a taxonomy, we also survey currently available research testbeds, identify existing gaps and suggest new directions based on experience from recent efforts in this field

    Concept and design of the hybrid distributed embedded systems testbed

    Get PDF
    Wireless mesh networks are an emerging and versatile communication technology. The most common application of these networks is to provide access of any number of users to the world wide Internet. They can be set up by Internet service providers or even individuals joined in communities. Due to the wireless medium that is shared by all participants, effects like short-time fading, or the multi-hop property of the network topology many issues are still in the focus of research. Testbeds are a powerful tool to study wireless mesh networks as close as possible to real world application scenarios. In this technical report we describe the design, architecture, and implementation of our work-in-progress wireless testbed at Freie Universität Berlin consisting of 100 mesh routers that span multiple buildings. The testbed is hybrid as it combines wireless mesh network routers with a wireless sensor network

    Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things

    Full text link
    Numerous energy harvesting wireless devices that will serve as building blocks for the Internet of Things (IoT) are currently under development. However, there is still only limited understanding of the properties of various energy sources and their impact on energy harvesting adaptive algorithms. Hence, we focus on characterizing the kinetic (motion) energy that can be harvested by a wireless node with an IoT form factor and on developing energy allocation algorithms for such nodes. In this paper, we describe methods for estimating harvested energy from acceleration traces. To characterize the energy availability associated with specific human activities (e.g., relaxing, walking, cycling), we analyze a motion dataset with over 40 participants. Based on acceleration measurements that we collected for over 200 hours, we study energy generation processes associated with day-long human routines. We also briefly summarize our experiments with moving objects. We develop energy allocation algorithms that take into account practical IoT node design considerations, and evaluate the algorithms using the collected measurements. Our observations provide insights into the design of motion energy harvesters, IoT nodes, and energy harvesting adaptive algorithms.Comment: 15 pages, 11 figure

    Wireless Sensor Network Virtualization: A Survey

    Get PDF
    Wireless Sensor Networks (WSNs) are the key components of the emerging Internet-of-Things (IoT) paradigm. They are now ubiquitous and used in a plurality of application domains. WSNs are still domain specific and usually deployed to support a specific application. However, as WSN nodes are becoming more and more powerful, it is getting more and more pertinent to research how multiple applications could share a very same WSN infrastructure. Virtualization is a technology that can potentially enable this sharing. This paper is a survey on WSN virtualization. It provides a comprehensive review of the state-of-the-art and an in-depth discussion of the research issues. We introduce the basics of WSN virtualization and motivate its pertinence with carefully selected scenarios. Existing works are presented in detail and critically evaluated using a set of requirements derived from the scenarios. The pertinent research projects are also reviewed. Several research issues are also discussed with hints on how they could be tackled.Comment: Accepted for publication on 3rd March 2015 in forthcoming issue of IEEE Communication Surveys and Tutorials. This version has NOT been proof-read and may have some some inconsistencies. Please refer to final version published in IEEE Xplor

    A Bio-inspired Load Balancing Technique for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of multiple distributed nodes each with limited resources. With their strict resource constraints and application-specific characteristics, WSNs contain many challenging trade-offs. This thesis is concerned with the load balancing of Wireless Sensor Networks (WSNs). We present an approach, inspired by bees’ pheromone propagation mechanism, that allows individual nodes to decide on the execution process locally to solve the trade-off between service availability and energy consumption. We explore the performance consequences of the pheromone-based load balancing approach using a system-level simulator. The effectiveness of the algorithm is evaluated on case studies based on sound sensors with different scenarios of existing approaches on variety of different network topologies. The performance of our approach is dependant on the values chosen for its parameters. As such, we utilise the Simulated Annealing to discover optimal parameter configurations for pheromone-based load balancing technique for any given network schema. Once the parameter values are optimised for the given network topology automatically, we inspect improving the pheromone-based load balancing approach using robotic agents. As cyber-physical systems benefit from the heterogeneity of the hardware components, we introduce the use of pheromone signalling-based robotic guidance that integrates the robotic agents to the existing load balancing approach by guiding the robots into the uncovered area of the sensor field. As such, we maximise the service availability using the robotic agents as well as the sensor nodes

    Politecast - a new communication primitive for wireless sensor networks

    Get PDF
    Wireless sensor networks have the potential for becoming a huge market. Ericsson predicts 50 billion devices interconnected to the Internet by the year 2020. Before that, the devices must be made to be able to withstand years of usage without having to change power source as that would be too costly. These devices are typically small, inexpensive and severally resource constrained. Communication is mainly wireless, and the wireless transceiver on the node is typically the most power hungry component. Therefore, reducing the usage of radio is key to long lifetime. In this thesis I identify four problems with the conventional broadcast primitive. Based on those problems, I implement a new communication primitive. This primitive is called Politecast. I evaluate politecast in three case studies: the Steal the Light toy example, a Neighbor Discovery simulation and a full two-month deployment of the Lega system in the art gallery Liljevalchs. With the evaluations, Politecast is shown to be able to massively reduce the amount of traffic being transmitted and thus reducing congestion and increasing application performance. It also prolongs node lifetime by reducing the overhearing by waking up neighbors

    Effective algorithms and protocols for wireless networking: a topological approach

    Get PDF
    Much research has been done on wireless sensor networks. However, most protocols and algorithms for such networks are based on the ideal model Unit Disk Graph (UDG) model or do not assume any model. Furthermore, many results assume the knowledge of location information of the network. In practice, sensor networks often deviate from the UDG model significantly. It is not uncommon to observe stable long links that are more than five times longer than unstable short links in real wireless networks. A more general network model, the quasi unit-disk graph (quasi-UDG) model, captures much better the characteristics of wireless networks. However, the understanding of the properties of general quasi-UDGs has been very limited, which is impeding the design of key network protocols and algorithms. In this dissertation we study the properties for general wireless sensor networks and develop new topological/geometrical techniques for wireless sensor networking. We assume neither the ideal UDG model nor the location information of the nodes. Instead we work on the more general quasi-UDG model and focus on figuring out the relationship between the geometrical properties and the topological properties of wireless sensor networks. Based on such relationships we develop algorithms that can compute useful substructures (planar subnetworks, boundaries, etc.). We also present direct applications of the properties and substructures we constructed including routing, data storage, topology discovery, etc. We prove that wireless networks based on quasi-UDG model exhibit nice properties like separabilities, existences of constant stretch backbones, etc. We develop efficient algorithms that can obtain relatively dense planar subnetworks for wireless sensor networks. We also present efficient routing protocols and balanced data storage scheme that supports ranged queries. We present algorithmic results that can also be applied to other fields (e.g., information management). Based on divide and conquer and improved color coding technique, we develop algorithms for path, matching and packing problem that significantly improve previous best algorithms. We prove that it is unlikely for certain problems in operation science and information management to have any relatively effective algorithm or approximation algorithm for them
    corecore