115 research outputs found

    A soil moisture and temperature network for SMOS validation in Western Denmark

    Get PDF
    The Soil Moisture and Ocean Salinity Mission (SMOS) acquires surface soil moisture data of global coverage every three days. Product validation for a range of climate and environmental conditions across continents is a crucial step. For this purpose, a soil moisture and soil temperature sensor network was established in the Skjern River Catchment, Denmark. The objectives of this article are to describe a method to implement a network suited for SMOS validation, and to present sample data collected by the network to verify the approach. The design phase included (1) selection of a single SMOS pixel (44 × 44 km), which is representative of the land surface conditions of the catchment and with minimal impact from open water (2) arrangement of three network clusters along the precipitation gradient, and (3) distribution of the stations according to respective fractions of classes representing the prevailing environmental conditions. Overall, measured moisture and temperature patterns could be related to the respective land cover and soil conditions. Texture-dependency of the 0–5 cm soil moisture measurements was demonstrated. Regional differences in 0–5 cm soil moisture, temperature and precipitation between the north-east and south-west were found to be small. A first comparison between the 0–5 cm network averages and the SMOS soil moisture (level 2) product is in range with worldwide validation results, showing comparable trends for SMOS retrieved soil moisture (<i>R</i><sup>2</sup> of 0.49) as well as initial soil moisture and temperature from ECMWF used in the retrieval algorithm (<i>R</i><sup>2</sup> of 0.67 and 0.97, respectively). While retrieved/initial SMOS soil moisture indicate significant under-/overestimation of the network data (biases of −0.092/0.057 m<sup>3</sup> m<sup>−3</sup>), the initial temperature is in good agreement (bias of −0.2 °C). Based on these findings, the network performs according to expectations and proves to be well-suited for its purpose. The discrepancies between network and SMOS soil moisture will be subject of subsequent studies

    SMOS validation in the Skjern River Catchment, Denmark

    Get PDF

    Modeling L-Band Microwave Emission From Soil-Vegetation System

    Get PDF
    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T¬B) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg m-2, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T¬B measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized TB are employed to invert the H-polarized transmissivity (γh) for the monitored corn growing season

    Dielectric properties of marsh vegetation

    Get PDF
    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation – moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3–5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye’s model. Parameters of Debye’s model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation

    Soil Moisture Retrieval from Microwave Remote Sensing Observations

    Get PDF
    This chapter mainly describes the vegetated soil moisture retrieval approaches based on microwave remote sensing data. It will be comprised of three topics: (1) SAR polarimetric decomposition is to model the full coherency matrix as a summation of the surface, dihedral, and volume scattering mechanisms. After removing the volume scattering component, the soil moisture is estimated from the surface and dihedral scattering components. Particularly, various dynamic volume scattering models will be critically reviewed, allowing the readers to select the appropriate one to capture the complex variations of the volume scattering mechanism with crop phenological growth. (2) Radiative transfer model is to express the radar backscattering coefficient as the incoherent summation of different scattering components. Hereby, we will review the water cloud model and its several extensions for enhanced soil moisture retrieval. (3) Compared to the active radar, the passive radiometer possesses high temporal resolution but coarse spatial resolution. The third topic is dedicated to review the microwave emission models and the active-passive combined approaches, in the context of Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) missions

    Multiscale soil moisture retrievals from microwave remote sensing observations

    Get PDF
    Memoria de tesis doctoral presentada por María Piles Guillem para optar al grado de Doctora por la Universitat Politècnica de Catalunya (UPC), realizada bajo la dirección del Dr. Adriano Camps y de la Dra. Mercè Vall-llossera.-- 159 pages[EN] Soil moisture is a key state variable of the Earth’s system; it is the main variable that links the Earth’s water, energy and carbon cycles. Soil moisture variations affect the evolution of weather and climate over continental regions, and accurate observations of the Earth’s changing soil moisture are needed to achieve sustainable land and water management, and to enhance weather and climate forecasting skill, flood prediction and drought monitoring. This Ph.D. Thesis focuses on measuring the Earth’s surface soil moisture from space at a global and regional scale. [...][ES] La humedad del suelo es la variable que regula los intercambios de agua, energía, y carbono entre la tierra y la atmósfera. Mediciones precisas de humedad son necesarias para una gestión sostenible de los recursos de agua del planeta, para mejorar las predicciones meteorológicas y climáticas, y para la detección y monitorización de sequías e inundaciones. Esta tesis se centra en la medición de la humedad superficial de la Tierra desde el espacio, a escalas global y regional. [...]This work has been funded by the Spanish Ministry of Science and Education under the FPU grant AP2005-4912 and projects ESP2007-65667-C04-02 and AYA2008-05906-C02-01/ESPPeer Reviewe

    Snow cover properties and soil moisture derived from GPS signals

    Get PDF

    An artificial neural network approach for soil moisture retrieval using passive microwave data

    Get PDF
    Soil moisture is a key variable that defines land surface-atmosphere (boundary layer) interactions, by contributing directly to the surface energy and water balance. Soil moisture values derived from remote sensing platforms only accounts for the near surface soil layers, generally the top 5cm. Passive microwave data at L-band (1.4 GHz, 21cm wavelength) measurements are shown to be a very effective observation for surface soil moisture retrieval. The first space-borne L-band mission dedicated to observing soil moisture, the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, was launched on 2nd November 2009.Artificial Neural Network (ANN) methods have been used to empirically ascertain the complex statistical relationship between soil moisture and brightness temperature in the presence of vegetation cover. The current problem faced by this method is its inability to predict soil moisture values that are 'out-of-range' of the training data.In this research, an optimization model is developed for the Backpropagation Neural Network model. This optimization model utilizes the combination of the mean and standard deviation of the soil moisture values, together with the prediction process at different pre-determined, equal size regions to cope with the spatial and temporal variation of soil moisture values. This optimized model coupled with an ANN of optimum architecture, in terms of inputs and the number of neurons in the hidden layers, is developed to predict scale-to-scale and downscaling of soil moisture values. The dependency on the accuracy of the mean and standard deviation values of soil moisture data is also studied in this research by simulating the soil moisture values using a multiple regression model. This model obtains very encouraging results for these research problems.The data used to develop and evaluate the model in this research has been obtained from the National Airborne Field Experiments in 2005
    corecore