5,779 research outputs found

    A high temperature apparatus for measurement of the Seebeck coefficient

    Get PDF
    A high temperature Seebeck coefficient measurement apparatus with various features to minimize typical sources of error is designed and built. Common sources of temperature and voltage measurement error are described and principles to overcome these are proposed. With these guiding principles, a high temperature Seebeck measurement apparatus with a uniaxial 4-point contact geometry is designed to operate from room temperature to over 1200 K. This instrument design is simple to operate, and suitable for bulk samples with a broad range of physical types and shapes

    Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue

    Get PDF
    This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet

    Spatial and performance optimality in power distribution networks

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Complex network theory has been widely used in vulnerability analysis of power networks, especially for power transmission ones. With the development of the smart grid concept, power distribution networks are becoming increasingly relevant. In this paper, we model power distribution systems as spatial networks. Topological and spatial properties of 14 European power distribution networks are analyzed, together with the relationship between geographical constraints and performance optimization, taking into account economic and vulnerability issues. Supported by empirical reliability data, our results suggest that power distribution networks are influenced by spatial constraints which clearly affect their overall performance.Peer ReviewedPostprint (author's final draft

    Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level

    Get PDF
    Phosphor-converted white light-emitting diodes (LEDs) are becoming increasingly popular for general lighting. The non-rare-earth phosphorK(2)SiF(6): Mn4+, showing promising saturated red d-d-line emission, was investigated. To evaluate the application potential of this phosphor, the luminescence behavior was studied at high excitation intensities and on the microscopic level. The emission shows a sublinear behavior at excitation powers exceeding 40 W/cm(2), caused by ground-state depletion due to the ms range luminescence lifetime. The thermal properties of the luminescence in K2SiF6: Mn4+ were investigated up to 450 K, with thermal quenching only setting in above 400 K. The luminescence lifetime decreases with increasing temperature, even before thermal quenching sets in, which is favorable to counteract the sublinear response at high excitation intensity. A second, faster, decay component emerges above 295 K, which, according to crystal field calculations, is related to a fraction of the Mn4+ ions incorporated on tetragonally deformed lattice sites. A combined investigation of structural and luminescence properties in a scanning electron microscope using energy-dispersive X-ray spectroscopy and cathodoluminescence mappings showed both phosphor degradation at high fluxes and a preferential location of the light outcoupling at irregularities in the crystal facets. The use of K2SiF6: Mn4+ in a remote phosphor configuration is discussed

    Chemistry in Disks. II. -- Poor molecular content of the AB Aur disk

    Full text link
    We study the molecular content and chemistry of a circumstellar disk surrounding the Herbig Ae star AB Aur at (sub-)millimeter wavelengths. Our aim is to reconstruct the chemical history and composition of the AB Aur disk and to compare it with disks around low-mass, cooler T Tauri stars. We observe the AB Aur disk with the IRAM Plateau de Bure Interferometer in the C- and D- configurations in rotational lines of CS, HCN, C2H, CH3OH, HCO+, and CO isotopes. Using an iterative minimization technique, observed columns densities and abundances are derived. These values are further compared with results of an advanced chemical model that is based on a steady-state flared disk structure with a vertical temperature gradient, and gas-grain chemical network with surface reactions. We firmly detect HCO+ in the 1--0 transition, tentatively detect HCN, and do not detect CS, C2H, and CH3OH. The observed HCO+ and 13CO column densities as well as the upper limits to the column densities of HCN, CS, C2H, and CH3OH are in good agreement with modeling results and those from previous studies. The AB Aur disk possesses more CO, but is less abundant in other molecular species compared to the DM Tau disk. This is primarily caused by intense UV irradiation from the central Herbig A0 star, which results in a hotter disk where CO freeze out does not occur and thus surface formation of complex CO-bearing molecules might be inhibited.Comment: Accepted by A&

    Beltrami state in black-hole accretion disk: A magnetofluid approach

    Full text link
    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a blackhole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall MHD system, we find that the space-time curvature can significantly alter the magnetic/velocity decay rate as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce a new oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.Comment: 8 figure

    Multi-agent Adaptive Architecture for Flexible Distributed Real-time Systems

    Get PDF
    Recent critical embedded systems become more and more complex and usually react to their environment that requires to amend their behaviors by applying run-time reconfiguration scenarios. A system is defined in this paper as a set of networked devices, where each of which has its own operating system, a processor to execute related periodic software tasks, and a local battery. A reconfiguration is any operation allowing the addition-removal-update of tasks to adapt the device and the whole system to its environment. It may be a reaction to a fault or even optimization of the system functional behavior. Nevertheless, such scenario can cause the violation of real-time or energy constraints, which is considered as a critical run-time problem. We propose a multi-agent adaptive architecture to handle dynamic reconfigurations and ensure the correct execution of the concurrent real-time distributed tasks under energy constraints. The proposed architecture integrates a centralized scheduler agent (ScA) which is the common decision making element for the scheduling problem. It is able to carry out the required run-time solutions based on operation research techniques and mathematical tools for the system's feasibility. This architecture assigns also a reconfiguration agent (RA p ) to each device p to control and handle the local reconfiguration scenarios under the instructions of ScA. A token-based protocol is defined in this case for the coordination between the different distributed agents in order to guarantee the whole system's feasibility under energy constraints.info:eu-repo/semantics/publishedVersio

    Ab initio melting curve of molybdenum by the phase coexistence method

    Full text link
    We report ab initio calculations of the melting curve of molybdenum for the pressure range 0-400 GPa. The calculations employ density functional theory (DFT) with the Perdew-Burke-Ernzerhof exchange-correlation functional in the projector augmented wave (PAW) implementation. We present tests showing that these techniques accurately reproduce experimental data on low-temperature b.c.c. Mo, and that PAW agrees closely with results from the full-potential linearized augmented plane-wave implementation. The work attempts to overcome the uncertainties inherent in earlier DFT calculations of the melting curve of Mo, by using the ``reference coexistence'' technique to determine the melting curve. In this technique, an empirical reference model (here, the embedded-atom model) is accurately fitted to DFT molecular dynamics data on the liquid and the high-temperature solid, the melting curve of the reference model is determined by simulations of coexisting solid and liquid, and the ab initio melting curve is obtained by applying free-energy corrections. Our calculated melting curve agrees well with experiment at ambient pressure and is consistent with shock data at high pressure, but does not agree with the high pressure melting curve deduced from static compression experiments. Calculated results for the radial distribution function show that the short-range atomic order of the liquid is very similar to that of the high-T solid, with a slight decrease of coordination number on passing from solid to liquid. The electronic densities of states in the two phases show only small differences. The results do not support a recent theory according to which very low dTm/dP values are expected for b.c.c. transition metals because of electron redistribution between s-p and d states.Comment: 27 pages, 10 figures. to be published in Journal of Chemical Physic
    • …
    corecore