649 research outputs found

    Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions

    Get PDF
    Percutaneous thermal ablation has proved to be an effective modality for treating both benign and malignant tumors in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50 oC, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumor destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of- the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non- invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow

    Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification

    Get PDF
    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems

    Modelling heat transfer in tissues treated with thermal ablation

    Get PDF

    Microwave ablation of renal tumors: state of the art and development trends

    Get PDF
    In the last decades an increased incidence of new renal tumor cases has been for clinically localized, small tumors <2.0 cm. This trend for small, low-stage tumors is the reflection of earlier diagnosis primarily as a result of the widespread and increasing use of non-invasive abdominal imaging modalities such as ultrasound, computerized tomography, and magnetic resonance imaging. Renal tumors are often diagnosed in elderly patients, with medical comorbidities whom the risk of surgical complications may pose a greater risk of death than that due to the tumor itself. In these patients, unsuitable for surgical approach, thermal ablation represents a valid alternative to traditional surgery. Thermal ablation is a less invasive, less morbid treatment option thanks to reduced blood loss, lower incidence of complications during the procedure and a less long convalescence. At present, the most widely used thermal ablative techniques are cryoablation, radiofrequency ablation and microwave ablation (MWA). MWA offers many benefits of other ablation techniques and offers several other advantages: higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the ability to use multiple applicators simultaneously, optimal heating of cystic masses and tumors close to the vessels and less procedural pain. This review aims to provide the reader with an overview about the state of the art of microwave ablation for renal tumors and to cast a glance on the new development trends of this technique

    Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects

    Get PDF
    Thermal ablation is a widely applied electrosurgical process in medical treatment of soft biological tissues. Numerical modeling and simulations play an important role in prediction of temperature distribution and damage volume during the treatment planning stage of associated therapies. In this contribution we report a coupled thermo-electro-mechanical model, accounting for heat relaxation time, for more accurate and precise prediction of the temperature distribution, tissue deformation and damage volume during the thermal ablation of biological tissues. Finite element solutions are obtained for most widely used percutaneous thermal ablative techniques, viz., radiofrequency ablation (RFA) and microwave ablation (MWA). Importantly, both tissue expansion and shrinkage have been considered for modeling the tissue deformation in the coupled model of high temperature thermal ablation. The coupled model takes into account the non-Fourier effects, considering both single-phase lag (SPL) and dual-phase-lag (DPL) models of bio-heat transfer. The temperature-dependent electrical and thermal parameters, damage-dependent blood perfusion rate and phase change effect accounting for tissue vaporization have been accounted for obtaining more clinically relevant model. The proposed model predictions are found to be in good agreement against the temperature distribution and damage volume reported by previous experimental studies. The numerical simulation results revealed that the non-Fourier effects cause a decrease in the predicted temperature distribution, tissue deformation and damage volume during the high temperature thermal ablative procedures. Furthermore, the effects of different magnitudes of phase lags of the heat flux and temperature gradient on the predicted treatment outcomes of the considered thermal ablative modalities are also quantified and discussed in detail

    Medical Laser-Induced Thermotherapy - Models and Applications

    Get PDF
    Heat has long been utilised as a therapeutic tool in medicine. Laser-induced thermotherapy aims at achieving the local destruction of lesions, relying on the conversion of the light absorbed by the tissue into heat. In interstitial laser-induced thermotherapy, light is focused into thin optical fibres, which are placed deep into the tumour mass. The objective of this work was to increase the understanding of the physical and biological phenomena governing the response to laser-induced thermotherapy, with special reference to treatment of liver tumours and benign prostatic hyperplasia. Mathematical models were used to calculate the distribution of light absorption and the subsequent temperature distribution in laser-irradiated tissues. The models were used to investigate the influence on the temperature distribution of a number of different factors, such as the design of the laser probe, the number of fibres, the optical properties of the tissue, the duration of irradiation, blood perfusion and boundary conditions. New results concerning transurethral microwave thermotherapy were obtained by incorporating the distribution of absorbed microwaves into the model. Prototypes of new laser applicators for anatomically correct treatment of benign prostatic hyperplasia were developed and tested ex vivo. Experimental work on liver tumours pointed to the importance of eliminating the blood flow in the liver during treatment to reduce convective heat loss. In addition, it was shown that hepatic inflow occlusion during treatment increased the thermal sensitivity of tumour tissue. The dynamic influence of interstitial laser thermotherapy on liver perfusion was investigated using interstitial laser Doppler flowmetry. Vessel damage after the combined treatment of laser-induced heat treatment and photodynamic therapy was studied

    A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode

    Get PDF
    Purpose: To improve the computer modelling of radiofrequency ablation (RFA) by internally cooled wet (ICW) electrodes with added clinically oriented features. Methods: An improved RFA computer model by ICW electrode included: (1) a realistic spatial distribution of the infused saline, and (2) different domains to distinguish between healthy tissue, saline-infused tumour, and non-infused tumour, under the assumption that infused saline is retained within the tumour boundary. A realistic saline spatial distribution was obtained from an in vivo pig liver study. The computer results were analysed in terms of impedance evolution and coagulation zone (CZ) size, and were compared to the results of clinical trials conducted on 17 patients with the same ICW electrode. Results: The new features added to the model provided computer results that matched well with the clinical results. No roll-offs occurred during the 4-min ablation. CZ transversal diameter (4.10 ± 0.19 cm) was similar to the computed diameter (4.16 cm). Including the tumour and saline infusion in the model involved (1) a reduction of the initial impedance by 10 − 20 Ω, (2) a delay in roll-off of 20 s and 70 − 100 s, respectively, and (3) 18 − 31% and 22 − 36% larger CZ size, respectively. The saline spatial distribution geometry was also seen to affect roll-off delay and CZ size. Conclusions: Using a three-compartment model and a realistic saline spatial distribution notably improves the match with the outcome of the clinical trials

    Numerical study of the influence of water evaporation on radiofrequency ablation

    Full text link

    LARGE TARGET TISSUE NECROSIS OF RADIOFREQUENCY ABLATION USING MATHEMATICAL MODELLING

    Get PDF
    Radiofrequency ablation (RFA) is a clinic tool for the treatment of various target tissues. However, one of the major limitations with RFA is the ‘small’ size of target tissues that can be effectively ablated. By small it is meant the size of the target tissue is less than 3 cm in diameter of the tissue otherwise ‘large’ size of tissue in this thesis. A typical problem with RFA for large target tissue is the incompleteness of tumour ablation, which is an important reason for tumour recurring. It is widely agreed that two reasons are responsible for the tumour recurring: (1) the tissue charring and (2) the ‘heat-sink’ effect of large blood vessels (i.e. ≥3 mm in diameter). This thesis study was motivated to more quantitatively understand tissue charring during the RFA procedure and to develop solutions to increase the size of target tissues to be ablated. The thesis study mainly performed three tasks: (1) evaluation of the existing devices and protocols to give a clear understanding of the state of arts of RFA devices in clinic, (2) development of an accurate mathematical model for the RFA procedure to enable a more quantitative understanding of the small target tissue size problem, and (3) development of a new protocol based on the existing device to increase the size of target tissues to be ablated based on the knowledge acquired from (1) and (2). In (1), a design theory called axiomatic design theory (ADT) was applied in order to make the evaluation more objective. In (2), a two-compartment finite element model was developed and verified with in vitro experiments, where liver tissue was taken and a custom-made RFA system was employed; after that, three most commonly used internally cooled RFA systems (constant, pulsed, and temperature-controlled) were employed to demonstrate the maximum size of tumour that can be ablated. In (3) a novel feedback temperature-controlled RFA protocol was proposed to overcome the small target tissue size problem, which includes (a) the judicious selection of control areas and target control temperatures and (b) the use of the tissue temperature instead of electrode tip temperature as a feedback for control. The conclusions that can be drawn from this thesis are given as follows: (1) the decoupled design in the current RFA systems can be a critical reason for the incomplete target tissue necrosis (TTN), (2) using both the constant RFA and pulsed RFA, the largest TTN can be achieved at the maximum voltage applied (MVA) without the roll-off occurrence. Furthermore, the largest TTN sizes for both constant RFA and pulsed RFA are all less than 3 cm in diameter, (3) for target tissues of different sizes, the MVA without the roll-off occurrence is different and it decreases with increase of the target tissue size, (4) the largest TTN achieved by using temperature-controlled RFA under the current commercial protocol is still smaller 3 cm in diameter, and (5) the TTN with and over 3 cm in diameter can be obtained by using temperature-controlled RFA under a new protocol developed in this thesis study, in which the temperature of target tissue around the middle part of electrode is controlled at 90 ℃ for a standard ablation time (i.e. 720 s). There are a couple of contributions with this thesis. First, the underlying reason of the incomplete TTN of the current commercially available RFA systems was found, which is their inadequate design (i.e. decoupled design). This will help to give a guideline in RFA device design or improvement in the future. Second, the thesis has mathematically proved the empirical conclusion in clinic that the limit size of target tissue using the current RFA systems is 3 cm in diameter. This has advanced our understanding of the limit of the RFA technology in general. Third, the novel protocol proposed by the thesis is promising to increase the size of TTN with RFA technology by about 30%. The new protocol also reveals a very complex thermal control problem in the context of human tissues, and solving this problem effectively gives implication to similar problems in other thermal-based tumour ablation processes
    corecore