277 research outputs found

    Spacetime Freeview Generation Using Image-based Rendering, Relighting, and Augmented Telepresence

    Get PDF
    ABSTRACT This paper proposes an freeview generation technique providing the users to change their viewpoints beyond time and space. The study consists of three technical elements: image-based rendering, relighting, and augmented telepresence. Before now, we have developed two systems relating this study: an augmented telepresence system and a full spherical HDR aerial imaging system

    Machine Vision System to Induct Binocular Wide-Angle Foveated Information into Both the Human and Computers - Feature Generation Algorithm based on DFT for Binocular Fixation

    Get PDF
    This paper introduces a machine vision system, which is suitable for cooperative works between the human and computer. This system provides images inputted from a stereo camera head not only to the processor but also to the user’s sight as binocular wide-angle foveated (WAF) information, thus it is applicable for Virtual Reality (VR) systems such as tele-existence or training experts. The stereo camera head plays a role to get required input images foveated by special wide-angle optics under camera view direction control and 3D head mount display (HMD) displays fused 3D images to the user. Moreover, an analog video signal processing device much inspired from a structure of the human visual system realizes a unique way to provide WAF information to plural processors and the user. Therefore, this developed vision system is also much expected to be applicable for the human brain and vision research, because the design concept is to mimic the human visual system. Further, an algorithm to generate features using Discrete Fourier Transform (DFT) for binocular fixation in order to provide well-fused 3D images to 3D HMD is proposed. This paper examines influences of applying this algorithm to space variant images such as WAF images, based on experimental results

    A 360 VR and Wi-Fi Tracking Based Autonomous Telepresence Robot for Virtual Tour

    Get PDF
    This study proposes a novel mobile robot teleoperation interface that demonstrates the applicability of a robot-aided remote telepresence system with a virtual reality (VR) device to a virtual tour scenario. To improve realism and provide an intuitive replica of the remote environment for the user interface, the implemented system automatically moves a mobile robot (viewpoint) while displaying a 360-degree live video streamed from the robot to a VR device (Oculus Rift). Upon the user choosing a destination location from a given set of options, the robot generates a route based on a shortest path graph and travels along that the route using a wireless signal tracking method that depends on measuring the direction of arrival (DOA) of radio signals. This paper presents an overview of the system and architecture, and discusses its implementation aspects. Experimental results show that the proposed system is able to move to the destination stably using the signal tracking method, and that at the same time, the user can remotely control the robot through the VR interface

    Best of Both Worlds: Merging 360˚ Image Capture with 3D Reconstructed Environments for Improved Immersion in Virtual Reality

    Get PDF
    With the recent proliferation of high-quality 360° photos and video, consumers of virtual reality (VR) media have come to expect photorealistic immersive content. Most 360° VR content, however, is captured with monoscopic camera rigs and inherently fails to provide users with a sense of 3D depth and 6 degree-of-freedom (DOF) mobility. As a result, the medium is significantly limited in its immersive quality. This thesis aims to demonstrate how content creators can further bridge the gap between 360° content and fully immersive real-world VR simulations. We attempt to design a method that combines monoscopic 360° image capture with 3D reconstruction -- taking advantage of the best qualities of both technologies while only using consumer-grade equipment. By mapping the texture from panoramic 360° images to the 3D geometry of a scene, this system significantly improves the photo-realism of 3D reconstructed spaces at specific points of interest in a virtual environment. The technical hurdles faced during the course of this research work, and areas of further work needed to perfect the system, are discussed in detail. Once perfected, a user of the system should be able to simultaneously appreciate visual detail in 360-degrees while experiencing full mobility, i.e., to move around within the immersed scene.Bachelor of Art

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance

    An Efficient Image-Based Telepresence System for Videoconferencing

    Full text link

    Towards Intelligent Telerobotics: Visualization and Control of Remote Robot

    Get PDF
    Human-machine cooperative or co-robotics has been recognized as the next generation of robotics. In contrast to current systems that use limited-reasoning strategies or address problems in narrow contexts, new co-robot systems will be characterized by their flexibility, resourcefulness, varied modeling or reasoning approaches, and use of real-world data in real time, demonstrating a level of intelligence and adaptability seen in humans and animals. The research I focused is in the two sub-field of co-robotics: teleoperation and telepresence. We firstly explore the ways of teleoperation using mixed reality techniques. I proposed a new type of display: hybrid-reality display (HRD) system, which utilizes commodity projection device to project captured video frame onto 3D replica of the actual target surface. It provides a direct alignment between the frame of reference for the human subject and that of the displayed image. The advantage of this approach lies in the fact that no wearing device needed for the users, providing minimal intrusiveness and accommodating users eyes during focusing. The field-of-view is also significantly increased. From a user-centered design standpoint, the HRD is motivated by teleoperation accidents, incidents, and user research in military reconnaissance etc. Teleoperation in these environments is compromised by the Keyhole Effect, which results from the limited field of view of reference. The technique contribution of the proposed HRD system is the multi-system calibration which mainly involves motion sensor, projector, cameras and robotic arm. Due to the purpose of the system, the accuracy of calibration should also be restricted within millimeter level. The followed up research of HRD is focused on high accuracy 3D reconstruction of the replica via commodity devices for better alignment of video frame. Conventional 3D scanner lacks either depth resolution or be very expensive. We proposed a structured light scanning based 3D sensing system with accuracy within 1 millimeter while robust to global illumination and surface reflection. Extensive user study prove the performance of our proposed algorithm. In order to compensate the unsynchronization between the local station and remote station due to latency introduced during data sensing and communication, 1-step-ahead predictive control algorithm is presented. The latency between human control and robot movement can be formulated as a linear equation group with a smooth coefficient ranging from 0 to 1. This predictive control algorithm can be further formulated by optimizing a cost function. We then explore the aspect of telepresence. Many hardware designs have been developed to allow a camera to be placed optically directly behind the screen. The purpose of such setups is to enable two-way video teleconferencing that maintains eye-contact. However, the image from the see-through camera usually exhibits a number of imaging artifacts such as low signal to noise ratio, incorrect color balance, and lost of details. Thus we develop a novel image enhancement framework that utilizes an auxiliary color+depth camera that is mounted on the side of the screen. By fusing the information from both cameras, we are able to significantly improve the quality of the see-through image. Experimental results have demonstrated that our fusion method compares favorably against traditional image enhancement/warping methods that uses only a single image
    corecore