2,295 research outputs found

    Bilevel shared control for teleoperators

    Get PDF
    A shared system is disclosed for robot control including integration of the human and autonomous input modalities for an improved control. Autonomously planned motion trajectories are modified by a teleoperator to track unmodelled target motions, while nominal teleoperator motions are modified through compliance to accommodate geometric errors autonomously in the latter. A hierarchical shared system intelligently shares control over a remote robot between the autonomous and teleoperative portions of an overall control system. Architecture is hierarchical, and consists of two levels. The top level represents the task level, while the bottom, the execution level. In space applications, the performance of pure teleoperation systems depend significantly on the communication time delays between the local and the remote sites. Selection/mixing matrices are provided with entries which reflect how each input's signals modality is weighted. The shared control minimizes the detrimental effects caused by these time delays between earth and space

    Research issues in implementing remote presence in teleoperator control

    Get PDF
    The concept of remote presence in telemanipulation is presented. A conceptual design of a prototype teleoperator system incorporating remote presence is described. The design is presented in functional terms, sensor, display, and control subsystem. An intermediate environment, in which the human operator is made to feel present, is explicated. The intermediate environment differs from the task environment due to the quantity and type of information presented to an operator and due to scaling factors protecting the operator from the hazards of the task environment. Potential benefits of remote presence systems, both for manipulation and for the study of human cognition and preception are discussed

    Issues associated with telerobotic systems in space

    Get PDF
    Research issues in using telerobotics in space are discussed. Included is a review of previous research in space telerobotics and the results of several telerobotics experiments

    Man-machine interface issues in space telerobotics: A JPL research and development program

    Get PDF
    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years

    Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    Get PDF
    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks

    Delay compensation for nonlinear teleoperators using predictor observers

    Get PDF
    This paper presents a delay compensation technique for nonlinear teleoperators by developing a predictor type sliding mode observer (SMO) that estimates future states of the slave operator. Predicted states are then used in control formulation. In the proposed scheme, disturbance observers (DOB) are also utilized to linearize nonlinear dynamics of the master and slave operators. It is shown that utilization of disturbance observers and predictor observer allow simple PD controllers to be used to provide stable position tracking for bilateral teleoperation. Proposed approach is verified with simulations where it is compared with two state-of-the-art methods. Successful experimental results with a bilateral teleoperation system consisting of a pair of pantograph robots also validates the proposed method

    TeleOperator/telePresence System (TOPS) Concept Verification Model (CVM) development

    Get PDF
    The development of an anthropomorphic, undersea manipulator system, the TeleOperator/telePresence System (TOPS) Concept Verification Model (CVM) is described. The TOPS system's design philosophy, which results from NRaD's experience in undersea vehicles and manipulator systems development and operations, is presented. The TOPS design approach, task teams, manipulator, and vision system development and results, conclusions, and recommendations are presented

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance
    corecore