12 research outputs found

    A Magnetic Laser Scanner for Endoscopic Microsurgery

    Get PDF
    Laser scanners increase the quality of the laser microsurgery enabling fast tissue ablation with less thermal damage. Such technology is part of state-of-the-art freebeam surgical laser systems. However, laser scanning has not been incorporated to fiber-based lasers yet. This is a combination that has potential to greatly improve the quality of laser microsurgeries on difficult-to-reach surgical sites. Current fiberbased tissue ablations are performed in contact with the tissue, resulting in excessive thermal damage to healthy tissue in the vicinity of the ablated tissue. This is far from ideal for delicate microsurgeries, which require high-quality tissue incisions without any thermal damage or char formation. However, the possibility to perform scanning laser microsurgery in confined workspaces is restricted by the large size of currently available actuators, which are typically located outside the patient and require direct line-of-sight to the microsurgical area. Thus, it is desired to have the laser scanning feature in an endoscopic system to provide high incision quality in hard-to-reach surgical sites. This thesis aims to introduce a new endoscopic laser scanner to perform 2D position control and high-speed scanning of a fiber-based laser for operation in narrow workspaces. It also presents a technology concept aimed at assisting in incision depth control during soft-tissue microsurgery. The main objective of the work presented in this thesis is to bring the benefits of free-beam lasers to laser-based endoscopic surgery by designing an end-effector module to be placed at the distal tip of a flexible robot arm. To this end, the design and control of a magnetic laser scanner for endoscopic microsurgeries is presented. The system involves an optical fiber, electromagnetic coils, a permanent magnet and optical lenses in a compact system for laser beam deflection. The actuation mechanism is based on the interaction between the electromagnetic field and the permanent magnets. A cantilevered optical fiber is bended with the magnetic field induced by the electromagnetic coils by creating magnetic torque on the permanent magnet. The magnetic laser scanner provides 2D position control and high-speed scanning of the laser beam. The device includes laser focusing optics to allow non-contact incisions. A proof-of-concept device was manufactured and evaluated. It includes four electromagnetic coils and two plano-convex lenses, and has an external diameter of 13 mm. A 4 74 mm2 scanning range was achieved at a 30 mm distance from the scanner tip. Computer-controlled trajectory executions demonstrated repeatable results with 75 m precision for challenging trajectories. Frequency analysis demonstrated stable response up to 33 Hz for 3 dB limit. The system is able to ablate tissue substitutes with a 1940 nm wavelength surgical diode laser. Tablet-based control interface has been developed for intuitive teleoperation. The performance of the proof-of-concept device is analysed through control accuracy and usability studies. Teleoperation user trials consisting in trajectory-following tasks involved 12 subjects. Results demonstrated users could achieve an accuracy of 39 m with the magnetic laser scanner system. For minimally invasive surgeries, it is essential to perform accurate laser position control. Therefore, a model based feed-forward position control of magnetic laser scanner was developed for automated trajectory executions. First, the dynamical model of the system was identified using the electromagnets current (input) and the laser position (output). Then, the identified model was used to perform feedforward control. Validation experiments were performed with different trajectory types, frequencies and amplitudes. Results showed that desired trajectories can be executed in high-speed scanning mode with less than 90 m (1.4 mrad bending angle) accuracy for frequencies up to 15 Hz. State-of-the-art systems do not provide incision depth control, thus the quality of such control relies entirely on the experience and visual perception of the surgeons. In order to provide intuitive incision depth control in endoscopic microsurgeries, the concept of a technology was presented for the automated laser incisions given a desired depth based on a commercial laser scanner. The technology aims at automatically controlling laser incisions based on high-level commands from the surgeon, i.e. desired incision shape, length and depth. A feed-forward controller provides (i) commands to the robotic laser system and (ii) regulates the parameters of the laser source to achieve the desired results. The controller for the incision depth is extracted from experimental data. The required energy density and the number of passes are calculated to reach the targeted depth. Experimental results demonstrate that targeted depths can be achieved with \ub1100 m accuracy, which proves the feasibility of this approach. The proposed technology has the potential to facilitate the surgeon\u2019s control over laser incisions. The magnetic laser scanner enables high-speed laser positioning in narrow and difficult-to-reach workspaces, promising to bring the benefits of scanning laser microsurgery to flexible endoscopic procedures. In addition, the same technology can be potentially used for optical fiber based imaging, enabling for example the creation of new family of scanning endoscopic OCT or hyperspectral probes

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Mechanical Manipulation and Characterization of Biological Cells

    Get PDF
    Mechanical manipulation and characterization of an individual biological cell is currently one of the most exciting research areas in the field of medical robotics. Single cell manipulation is an important process in intracytoplasmic sperm injection (ICSI), pro-nuclei DNA injection, gene therapy, and other biomedical areas. However, conventional cell manipulation requires long training and the success rate depends on the experience of the operator. The goal of this research is to address the drawbacks of conventional cell manipulation by using force and vision feedback for cell manipulation tasks. We hypothesize that force feedback plays an important role in cell manipulation and possibly helps in cell characterization. This dissertation will summarize our research on: 1) the development of force and vision feedback interface for cell manipulation, 2) human subject studies to evaluate the addition of force feedback for cell injection tasks, 3) the development of haptics-enabled atomic force microscope system for cell indentation tasks, 4) appropriate analytical model for characterizing the mechanical property of mouse embryonic stem cells (mESC) and 5) several indentation studies on mESC to determine the mechanical property of undifferentiated and early differentiating (6 days under differentiation conditions) mESC. Our experimental results on zebrafish egg cells show that a system with force feedback capability when combined with vision feedback can lead to potentially higher success rates in cell injection tasks. Using this information, we performed experiments on mESC using the AFM to understand their characteristics in the undifferentiated pluripotent state as well as early differentiating state. These experiments were done on both live as well as fixed cells to understand the correlation between the two during cell indentation studies. Our results show that the mechanical property of undifferentiated mESC differs from early differentiating (6th day) mESC in both live and fixed cells. Thus, we hypothesize that mechanical characterization studies will potentially pave the way for developing a high throughput system with force feedback capability, to understand and predict the differentiation path a particular pluripotent cell will follow. This finding could also be used to develop improved methods of targeted cellular differentiation of stem cells for therapeutic and regenerative medicine

    HERO Glove

    Get PDF
    Non-repetitive manipulation tasks that are easy for humans to perform are difficult for autonomous robots to execute. The Haptic Exoskeletal Robot Operator (HERO) Glove is a system designed for users to remotely control robot manipulators whilst providing sensory feedback to the user. This realistic haptic feedback is achieved through the use of toroidal air-filled actuators that stiffen up around the user’s fingers. Tactile sensor data is sent from the robot to the HERO Glove, where it is used to vary the pressure in the toroidal actuators to simulate the sense of touch. Curvature sensors and inertial measurement units are used to capture the glove’s pose to control the robot

    Microfluidics and Bio-MEMS for Next Generation Healthcare.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Lab-on-a-Chip Fabrication and Application

    Get PDF
    The necessity of on-site, fast, sensitive, and cheap complex laboratory analysis, associated with the advances in the microfabrication technologies and the microfluidics, made it possible for the creation of the innovative device lab-on-a-chip (LOC), by which we would be able to scale a single or multiple laboratory processes down to a chip format. The present book is dedicated to the LOC devices from two points of view: LOC fabrication and LOC application

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    Get PDF
    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered
    corecore