10,917 research outputs found

    Quantifying the potential for improved management of weather risk using subseasonal forecasting: the case of UK telecommunications infrastructure

    Get PDF
    Reliable and affordable telecommunications are an integral part of service-based economies but the nature of the associated physical infrastructure leads to considerable exposure to weather. With unique access to observational records of the UK fixed-line telecommunications infrastructure, an end-to-end demonstration of how extended range forecasts can be used to improve the management of weather risk is presented, assessing forecast value on both short term ‘operational’ (weeks) and longer term ‘planning’ timeframes (months/years). A robust long-term weather-related fault-rate climatology is first constructed at weekly resolution, based on the ERA-Interim reanalysis. A clear dependence of winter fault rates on large-scale atmospheric circulation indices is demonstrated. The ECMWF subseasonal forecast system is subsequently shown to produce skilful forecast of winter-time weekly fault-rates at lead times of 3-4 weeks ahead (i.e., days 14-20 and 21-28). Forecast skill at a given lead-time is, however, a necessary rather than sufficient condition for improved risk management. It is shown that practical decision-making leads to dependencies across multiple forecasts times that cannot be modelled using traditional “cost-loss matrix” methods as errors in previous forecasts influence the value of subsequent forecasts. A parsimonious model representing operational decision-making for fault repair scheduling is therefore constructed to show that fault-rate forecast skill does improve both short-term and long-term management outcomes (in this case meeting performance targets more often in the short-term, or reducing the resources required to achieve these targets in the long-term). Consequently, it is argued that new methods are needed for forecast skill assessment in complex decision environments

    Risk based resilient network design

    Get PDF
    This paper presents a risk-based approach to resilient network design. The basic design problem considered is that given a working network and a fixed budget, how best to allocate the budget for deploying a survivability technique in different parts of the network based on managing the risk. The term risk measures two related quantities: the likelihood of failure or attack, and the amount of damage caused by the failure or attack. Various designs with different risk-based design objectives are considered, for example, minimizing the expected damage, minimizing the maximum damage, and minimizing a measure of the variability of damage that could occur in the network. A design methodology for the proposed risk-based survivable network design approach is presented within an optimization model framework. Numerical results and analysis illustrating the different risk based designs and the tradeoffs among the schemes are presented. © 2011 Springer Science+Business Media, LLC

    Network-based business process management: embedding business logic in communications networks

    Get PDF
    Advanced Business Process Management (BPM) tools enable the decomposition of previously integrated and often ill-defined processes into re-usable process modules. These process modules can subsequently be distributed on the Internet over a variety of many different actors, each with their own specialization and economies-of-scale. The economic benefits of process specialization can be huge. However, how should such actors in a business network find, select, and control, the best partner for what part of the business process, in such a way that the best result is achieved? This particular management challenge requires more advanced techniques and tools in the enabling communications networks. An approach has been developed to embed business logic into the communications networks in order to optimize the allocation of business resources from a network point of view. Initial experimental results have been encouraging while at the same time demonstrating the need for more robust techniques in a future of massively distributed business processes.active networks;business process management;business protocols;embedded business logic;genetic algorithms;internet distributed process management;payment systems;programmable networks;resource optimization

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de Economía y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    Solving Defender-Attacker-Defender Models for Infrastructure Defense

    Get PDF
    In Operations Research, Computing, and Homeland Defense, R.K. Wood and R.F. Dell, editors, INFORMS, Hanover, MD, pp. 28-49.The article of record as published may be located at http://dx.doi.org10.1287/ics.2011.0047This paper (a) describes a defender-attacker-defender sequential game model (DAD) to plan defenses for an infrastructure system that will enhance that system's resilience against attacks for an intelligent adversary, (b) describes a realistic formulation of DAD for defending a transportation network, (c) develops a decomposition algorithm for solving this instance of DAD and others, and (d) demonstrates the solution of a small transportation-network example. A DAD model generally evaluates system operation through the solution of an optimization model, and the decomposition algorithm developed here requires only that this system-operation model be continuous and convex. For example, our transportation-network example incorporates a congestion model with a (convex) nonlinear objective function and linear constraints
    corecore