74,465 research outputs found

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    Time and volume based optimal pricing strategies for telecommunication networks

    Get PDF
    In the recent past, there have been several initiatives by major network providers such as Turk Telekom lead the industry towards network capacity distribution in Turkey. In this study, we use a monopoly pricing model to examine the optimal pricing strategies for “pay-per-volume” and “pay-per-time” based leasing of data networks. Traditionally, network capacity distribution includes short/long term bandwidth and/or usage time leasing. Each consumer has a choice to select volume based pricing or connection time based pricing. When customers choose connection time based pricing, their optimal behavior would be utilizing the bandwidth capacity fully therefore it can cause network to burst. Also, offering pay-per-volume scheme to the consumer provides the advantage of leasing the excess capacity for other potential customers for network provider. We examine the following issues in this study: (i) What are the extra benefits to the network provider for providing the volume based pricing scheme? and (ii) Does the amount of demand (number of customers enter the market) change? The contribution of this paper is to show that pay-per-volume is a viable alternative for a large number of customers, and that judicious pricing for pay-per-volume is profitable for the network provider

    Concentrated Ground Plane Booster Antenna Technology for Multiband Operation in Handset Devices

    Get PDF
    The current demand in the handset antenna field requires multiband antennas due to the existence of multiple communication standards and the emergence of new ones. At the same time, antennas with reduced dimensions are strongly required in order to be easily integrated. In this sense, the paper proposes a compact radiating system that uses two non-resonant elements to properly excite the ground plane to solve the abovementioned shortcomings by minimizing the required Printed Circuit Board (PCB) area while ensuring a multiband performance. These non-resonant elements are called here ground plane boosters since they excite an efficient mode of the ground plane. The proposed radiating system comprises two ground plane boosters of small dimensions of 5 mm x 5 mm x 5 mm. One is in charge of the low frequency region (0.824-0.960 GHz) and the other is in charge of the high frequency region (1.710-2.170 GHz). With the aim of achieving a compact configuration, the two boosters are placed close to each other in a corner of the ground plane of a handset device (concentrated architecture). Several experiments related to the coupling between boosters have been carried out in two different platforms (barphone and smartphone), and the best position and the required matching network are presented. The novel proposal achieves multiband performance at GSM850/900/1800/1900 and UMTS

    Optimal pricing strategies for capacity leasing based on time and volume usage in telecommunication networks

    Get PDF
    In this study, we use a monopoly pricing model to examine the optimal pricing strategies for “pay-per-time”, “pay-per-volume” and “pay-per both time and volume” based leasing of data networks. Traditionally, network capacity distribution includes short/long term bandwidth and/or usage time leasing. Each consumer has a choice to select volume based, connection-time based or both volume and connection-time based pricing. When customers choose connection-time based pricing, their optimal behavior would be utilizing the bandwidth capacity fully, which can cause network to burst. Also, offering the pay-per-volume scheme to the consumer provides the advantage of leasing the excess capacity to other potential customers serving as network providers. However, volume-based strategies are decreasing the consumers’ interest and usage, because the optimal behaviors of the customers who choose the pay-per-volume pricing scheme generally encourages them to send only enough bytes for time-fixed tasks (for real time applications), causing quality of the task to decrease, which in turn creating an opportunity cost. Choosing pay-per time and volume hybridized pricing scheme allows customers to take advantages of both pricing strategies while decreasing (minimizing) the disadvantages of each, because consumers generally have both time-fixed and size-fixed task such as batch data transactions. However, such a complex pricing policy may confuse and frighten consumers. Therefore, in this study we examined the following two issues: (i) what (if any) are the benefits to the network provider of providing the time and volume hybridized pricing scheme? and (ii) would this offering schema make an impact on the market size? The main contribution of this study is to show that pay-per both time and volume pricing is a viable and often preferable alternative to the only time and/or only volume-based offerings for a large number of customers, and that judicious use of such pricing policy is profitable to the network provider

    A framework for modelling mobile radio access networks for intelligent fault management

    Get PDF
    Postprin

    Future broadband access network challenges

    Get PDF
    Copyright @ 2010 IEEEThe optical and wireless communication systems convergence will activate the potential capacity of photonic technology for providing the expected growth in interactive video, voice communication and data traffic services that are cost effective and a green communication service. The last decade growth of the broadband internet projects the number of active users will grow to over 2 billion globally by the end of 2014. Enabling the abandoned capacity of photonic signal processing is the promising solution for seamless transportation of the future consumer traffic demand. In this paper, the future traffic growth of the internet, wireless worldwide subscribers, and the end-users during the last and next decades is investigated. The challenges of the traditional access networks and Radio over Fiber solution are presented

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification
    corecore