29 research outputs found

    Haptic-guided assisted telemanipulation approach for grasping desired objects from heaps

    Full text link
    This paper presents an assisted telemanipulation framework for reaching and grasping desired objects from clutter. Specifically, the developed system allows an operator to select an object from a cluttered heap and effortlessly grasp it, with the system assisting in selecting the best grasp and guiding the operator to reach it. To this end, we propose an object pose estimation scheme, a dynamic grasp re-ranking strategy, and a reach-to-grasp hybrid force/position trajectory guidance controller. We integrate them, along with our previous SpectGRASP grasp planner, into a classical bilateral teleoperation system that allows to control the robot using a haptic device while providing force feedback to the operator. For a user-selected object, our system first identifies the object in the heap and estimates its full six degrees of freedom (DoF) pose. Then, SpectGRASP generates a set of ordered, collision-free grasps for this object. Based on the current location of the robot gripper, the proposed grasp re-ranking strategy dynamically updates the best grasp. In assisted mode, the hybrid controller generates a zero force-torque path along the reach-to-grasp trajectory while automatically controlling the orientation of the robot. We conducted real-world experiments using a haptic device and a 7-DoF cobot with a 2-finger gripper to validate individual components of our telemanipulation system and its overall functionality. Obtained results demonstrate the effectiveness of our system in assisting humans to clear cluttered scenes.Comment: Accepted to 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC

    Research and development of a rescue robot end-effector

    Get PDF
    Includes abstract.Includes bibliographical references.This report details the research, design, development and testing of an end-effector system for use on an Urban Search and Rescue (USAR) robot which is in development in the Robotics and Agents Research Laboratory (RARL) at the University of Cape Town (UCT). This is the 5th generation Mobile Robot Platform (MRP) that UCT has developed ... codenamed ‘Ratel’. USAR robots used to be mainly of the observation type, but new robots (including UCT’s Ratel MRP) are being developed to deal with inherently dynamic, complex and unpredictable disaster response situations, particularly related to object manipulation and gripping. In order to actively interact with the environment, a flexible and robust gripping system is vital. [an] end-effector solution ... was developed for the Ratel manipulator arm to fulfil these functions

    Monitoring companion for industrial robotic processes

    Get PDF
    For system integrators, optimizing complex industrial robotic applications (e.g. robotised welding) is a difficult and time-consuming task. This procedure is rendered tedious and often very hard to achieve when the operator cannot access the robotic system once in operation, perhaps because the installation is far away or because of the operational environment. In these circumstances, as an alternative to physically visiting the installation site, the system integrator may rely on additional nearby sensors to remotely acquire the necessary process information. While it is hard to completely replace this trial and error approach, it is possible to provide a way to gather process information more effectively that can be used in several robotic installations.This thesis investigates the use of a "monitoring robot" in addition to the task robot(s) that belong to the industrial process to be optimized. The monitoring robot can be equipped with several different sensors and can be moved into close proximity of any installed task robot so that it can be used to collect information from that process during and/or after the operation without interfering. The thesis reviews related work in the industry and in the field of teleoperation to identify the most important challenges in remote monitoring and teleoperation. From the background investigation it is clear that two very important issues are: i) the nature of the teleoperator’s interface and; ii) the efficiency of the shared control between the human operator and the monitoring system. In order to investigate these two issues efficiently it was necessary to create experimental scenarios that operate independently from any application scenario, so an abstract problem domain is created. This way the monitoring system's control and interface can be evaluated in a context that presents challenges that are typical of a remote monitoring task but are not application domain specific. Therefore the validity of the proposed approach can be assessed from a generic and, therefore, more powerful and widely applicable perspective. The monitoring framework developed in this thesis is described, both in the shared control design choices based on virtual fixtures (VF) and the implementation in a 3D visualization environment. The monitoring system developed is evaluated with a usability study with user participants. The usability study aims at assessing the system's performance along with its acceptance and ease of use in a static monitoring task, accompanied by user\hyp{}filled TLX questionnaires. Since future work will apply this system in real robotic welding scenarios, this thesis finally reports some preliminary work in such an application

    Reconfigurable kinematics of General Stewart Platform and simulation interface.

    Get PDF

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    WEHST: Wearable Engine for Human-Mediated Telepresence

    Get PDF
    This dissertation reports on the industrial design of a wearable computational device created to enable better emergency medical intervention for situations where electronic remote assistance is necessary. The design created for this doctoral project, which assists practices by paramedics with mandates for search-and-rescue (SAR) in hazardous environments, contributes to the field of human-mediated teleparamedicine (HMTPM). Ethnographic and industrial design aspects of this research considered the intricate relationships at play in search-and-rescue operations, which lead to the design of the system created for this project known as WEHST: Wearable Engine for Human-Mediated Telepresence. Three case studies of different teams were carried out, each focusing on making improvements to the practices of teams of paramedics and search-and-rescue technicians who use combinations of ambulance, airplane, and helicopter transport in specific chemical, biological, radioactive, nuclear and explosive (CBRNE) scenarios. The three paramedicine groups included are the Canadian Air Force 442 Rescue Squadron, Nelson Search and Rescue, and the British Columbia Ambulance Service Infant Transport Team. Data was gathered over a seven-year period through a variety of methods including observation, interviews, examination of documents, and industrial design. The data collected included physiological, social, technical, and ecological information about the rescuers. Actor-network theory guided the research design, data analysis, and design synthesis. All of this leads to the creation of the WEHST system. As identified, the WEHST design created in this dissertation project addresses the difficulty case-study participants found in using their radios in hazardous settings. As the research identified, a means of controlling these radios without depending on hands, voice, or speech would greatly improve communication, as would wearing sensors and other computing resources better linking operators, radios, and environments. WEHST responds to this need. WEHST is an instance of industrial design for a wearable “engine” for human-situated telepresence that includes eight interoperable families of wearable electronic modules and accompanying textiles. These make up a platform technology for modular, scalable and adaptable toolsets for field practice, pedagogy, or research. This document details the considerations that went into the creation of the WEHST design

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    A quasi-static model-based control methodology for articulated mechanical systems

    Get PDF
    Hazardous environments encountered in nuclear clean-up tasks mandate the use of complex robotic systems in many situations. The operation of these systems is now performed primarily under teleoperation. This is, at best, five times slower than equivalent direct human contact operations.One way to increase remote work efficiency is to use automation for specific tasks. However, the unstructured, complex nature of the environment along with the inherent structural flexibility of mobile robot work systems makes task automation difficult and in meiny cases impossible.This research considers a quasi-static macroscopic modeling methodology that could be combined with sensor-guided manipulation schemes to achieve the needed operational accuracies for remote work task automation. Application of this methodology begins with an off-line analysis phase in which the system is identified in terms of the ideal D-H parameters and its structural elements. Themanipulator is modeled with fundamental components (i.e. beam elements, hydraulic elements, etc)and then analyzed to determine load dependent functions that predict deflections at each joint and the end of each link. Next, forces applied at the end-effector and gravity loads are projected into local link coordinates using the undeflected pose of the manipulator. These local loads are then used to calculate deflections which are expressed as 4 by 4 homogeneous transformations and inserted into the original manipulator transformations to predict end-effector position and orientation (anderror/deflection vector). The error/deflection vector is then used to determine corrective actions based on the manipulator flexibilities, pose and loading. This corrective action alters the manipulator commands such that the manipulator end-effector is moved to the desired location based on the error between the model predictions and commanded position using the ideal kinematics.The modeling methodology can readily be applied to any kinematic chain. This allows analysis of a conceptual system in terms of basic mechanics and structural deflections. The methodology allows components such as actuators or links to be interchanged in simulation so that alternative designs may be tested. This capability could help avoid potentially costly conceptual design flaws at a very early stage in the design process.Real-time compensation strategies have been developed so as to lessen concerns with structural deformation during use. The compensation strategies presented here show that the modeling methods can be used to increase the end-effector accuracy by calculating the deflections and command adjustments iteratively in real-time. The iterations show rapid convergence of the adjusted command positions to reach the desired end-effector location. The compensation methods discussed are easily altered to fit systems of any complexity, only requiring changes in the number of variables and the number of equations to solve. Most importantly, however, is that the modeling methodology,in conjunction with the compensation methods, can be used to correct for a significant fraction of the errors associated with manipulator flexibility effects. Implementation in a real-time system only involves changes in path planning, not in low-level control.The modeling methods and deflection predictions were verified using a sub-system of the OakRidge National Laboratory\u27s Dual Arm Work Platform. The experimental method used simple,non-contact measurement devices that are minimally intrusive to the manipulator\u27s workspace. The Results show good correlation between model and experimental results for some configurations. Experimental results can be extrapolated to predict that errors could be reduced from several inches to several tenths of an inch for systems like the Dual Arm Work Platform in some configurations.Continuing work will investigate applications to selective automation for Decontamination and Dismantlement tasks, using this work as a necessary foundation

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations

    Estimação de verticalidade e estabilização de uma cabeça humanóide

    Get PDF
    Mestrado em Engenharia MecânicaO Projeto Humanóide da Universidade de Aveiro (PHUA) é a base desta dissertação que tem como objetivo estudar a estabilização da cabeça de um robô humanóide para efeitos de equilíbrio. Foram assim desenvolvidas soluções integradas usando o Robot Operating System (ROS). Para estabilizar a cabeça humanóide, foi estimado o vetor da gravidade (verticalidade) usando dados visuais. Para o fazer, duas soluções distintas foram abordadas, ambas baseadas na biblioteca Visual Servoing Platform (ViSP). Depois de estimada a verticalidade, a cabeça humanóide (uma câmara montada numa unidade roll-tilt) foi estabilizada recorrendo a um controlador proporcionalderivativo (PD) de posição para o servomotor responsável pelo ângulo roll e a um controlo PD de velocidade para o servomotor responsável pelo ângulo tilt. Para fazer as experiências, o sistema foi montado num manipulador robótico para permitir repetibilidade e controlo preciso de movimentos. A análise dos resultados das experiências mostra que quer a estimação da verticalidade quer a estabilização da cabeça humanóide foram tarefas realizadas com sucesso. Esta análise permite também concluir que a taxa de aquisição de imagem influencia os resultados, e que a limitada taxa do sistema usado (cerca de 15 imagens por segundo) condicionou um pouco a robustez dos resultados em situações mais exigentes.The Humanoid Project of the University of Aveiro (PHUA) is the basis of this dissertation, whose purpose is to study the effects of the stabilization of a humanoid head in obtaining its equilibrium. Therefore, integrated solutions using the Robot Operating System (ROS) were developed. To stabilize the humanoid head, the gravity vector (verticality) was estimated using visual data. In order to do so, two distinct solutions were approached, both based on the Visual Servoing Platform (ViSP) library. After estimating verticality, the humanoid head (a camera mounted on a roll-tilt unit) was stabilized using a proportional-derivative (PD) controller for the position of the servo responsible for the roll angle and a PD controller for the velocity of the servomotor responsible for the tilt angle. To perform the experiments, the system was mounted on a robotic manipulator to allow repeatability and precise movement control. An analysis to the experiment results shows that both the verticality estimation and head stabilization tasks were performed successfully. This analysis also allows for the conclusion that the image frame rate influences results, and that the limited frame rate of the system used (about 15 frames per second) slightly conditioned the robustness of results in more demanding scenarios
    corecore