211 research outputs found

    Fault detection, identification and accommodation techniques for unmanned airborne vehicles

    Get PDF
    Unmanned Airborne Vehicles (UAV) are assuming prominent roles in both the commercial and military aerospace industries. The promise of reduced costs and reduced risk to human life is one of their major attractions, however these low-cost systems are yet to gain acceptance as a safe alternate to manned solutions. The absence of a thinking, observing, reacting and decision making pilot reduces the UAVs capability of managing adverse situations such as faults and failures. This paper presents a review of techniques that can be used to track the system health onboard a UAV. The review is based on a year long literature review aimed at identifying approaches suitable for combating the low reliability and high attrition rates of today’s UAV. This research primarily focuses on real-time, onboard implementations for generating accurate estimations of aircraft health for fault accommodation and mission management (change of mission objectives due to deterioration in aircraft health). The major task of such systems is the process of detection, identification and accommodation of faults and failures (FDIA). A number of approaches exist, of which model-based techniques show particular promise. Model-based approaches use analytical redundancy to generate residuals for the aircraft parameters that can be used to indicate the occurrence of a fault or failure. Actions such as switching between redundant components or modifying control laws can then be taken to accommodate the fault. The paper further describes recent work in evaluating neural-network approaches to sensor failure detection and identification (SFDI). The results of simulations with a variety of sensor failures, based on a Matlab non-linear aircraft model are presented and discussed. Suggestions for improvements are made based on the limitations of this neural network approach with the aim of including a broader range of failures, while still maintaining an accurate model in the presence of these failures

    Unmanned Aerial Vehicle (UAV)-Assisted Water Sampling

    Get PDF
    Water quality assessment programs require the collection of water samples for physical, chemical, and bacteriological analysis. Lack of personnel, accessibility of water bodies, and time constraints for water sampling, especially after natural disasters and emergencies, are some of the challenges of water sampling. To overcome these challenges, a water collection mechanism was developed and mounted on a multirotor unmanned aerial vehicle (UAV) for autonomous water sampling from water bodies. The payload capacity and endurance of the UAV (hexacopter) were verified using an indoor test station. The hexacopter was equipped with floating foam, and the electronic components were coated against water damage in case of landing on water due to emergencies or water sampling. The system was able to collect water samples 48 times out of 73 autonomous flight missions from a pond. The unsuccessful missions were mainly due to the malfunctions of the servo motor used in water sampler’s triggering mechanism. The servo motor for the mechanism was replaced to prevent the future malfunctions. UAV-assisted autonomous water sampling is a promising method for collection of water from water bodies. The system would be useful for collection of water samples from large lakes or difficult to access water sources. The details of the developed water sampling mechanism and the multirotor UAV, and experiment results are reported in this thesis

    Design of miniaturized sensors for a mission-oriented uav application: A new pathway for early warning

    Get PDF
    In recent decades, the increasing threats associated with Chemical and Radiological (CR) agents prompted the development of new tools to detect and collect samples without putting in danger first responders inside contaminated areas. A particularly promising branch of these technological developments relates to the integration of different detectors and sampling systems with Unmanned Aerial Vehicles (UAV). The adoption of this equipment may bring significant benefits for both military and civilian implementations. For instance, instrumented UAVs could be used in support of specialist military teams such as Sampling and Identification of Biological, Chemical and Radiological Agents (SIBCRA) team, tasked to perform sampling in contaminated areas, detecting the presence of CR substances in field and then confirming, collecting and evaluating the effective threats. Furthermore, instrumented UAVs may find dual-use application in the civil world in support of emergency teams during industrial accidents and in the monitoring activities of critical infrastructures. Small size drones equipped with different instruments for detection and collection of samples may enable, indeed, several applications, becoming a tool versatile and easy to use in different fields, and even featuring equipment normally utilized in manual operation. The authors hereby present the design of miniaturized sensors for a mission-oriented UAV application and the preliminary results from an experimental campaign performed in 2020

    Design of Miniaturized Sensors for a Mission-Oriented UAV Application: A New Pathway for Early Warning

    Get PDF
    In recent decades, the increasing threats associated with Chemical and Radiological (CR) agents prompted the development of new tools to detect and collect samples without putting in danger first responders inside contaminated areas. A particularly promising branch of these technological developments relates to the integration of different detectors and sampling systems with Unmanned Aerial Vehicles (UAV). The adoption of this equipment may bring significant benefits for both military and civilian implementations. For instance, instrumented UAVs could be used in support of specialist military teams such as Sampling and Identification of Biological, Chemical and Radiological Agents (SIBCRA) team, tasked to perform sampling in contaminated areas, detecting the presence of CR substances in field and then confirming, collecting and evaluating the effective threats. Furthermore, instrumented UAVs may find dual-use application in the civil world in support of emergency teams during industrial accidents and in the monitoring activities of critical infrastructures. Small size drones equipped with different instruments for detection and collection of samples may enable, indeed, several applications, becoming a tool versatile and easy to use in different fields, and even featuring equipment normally utilized in manual operation. The authors hereby present the design of miniaturized sensors for a mission-oriented UAV application and the preliminary results from an experimental campaign performed in 2020

    Interactive Execution Monitoring of Agent Teams

    Full text link
    There is an increasing need for automated support for humans monitoring the activity of distributed teams of cooperating agents, both human and machine. We characterize the domain-independent challenges posed by this problem, and describe how properties of domains influence the challenges and their solutions. We will concentrate on dynamic, data-rich domains where humans are ultimately responsible for team behavior. Thus, the automated aid should interactively support effective and timely decision making by the human. We present a domain-independent categorization of the types of alerts a plan-based monitoring system might issue to a user, where each type generally requires different monitoring techniques. We describe a monitoring framework for integrating many domain-specific and task-specific monitoring techniques and then using the concept of value of an alert to avoid operator overload. We use this framework to describe an execution monitoring approach we have used to implement Execution Assistants (EAs) in two different dynamic, data-rich, real-world domains to assist a human in monitoring team behavior. One domain (Army small unit operations) has hundreds of mobile, geographically distributed agents, a combination of humans, robots, and vehicles. The other domain (teams of unmanned ground and air vehicles) has a handful of cooperating robots. Both domains involve unpredictable adversaries in the vicinity. Our approach customizes monitoring behavior for each specific task, plan, and situation, as well as for user preferences. Our EAs alert the human controller when reported events threaten plan execution or physically threaten team members. Alerts were generated in a timely manner without inundating the user with too many alerts (less than 10 percent of alerts are unwanted, as judged by domain experts)

    Maintanence on modern farms: innovative equipment

    Get PDF
    Smart farming and precision agriculture involve the integration of advanced technologies into existing farming practices in order to increase production efficiency and the quality of agricultural products. They also improve the quality of life for farm workers by reducing heavy labor and tedious tasks. Умное земледелие и точное земледелие предполагают интеграцию передовых технологий в существующие методы ведения сельского хозяйства с целью увеличения производства, повышения эффективности и качества сельскохозяйственной продукции. Также улучшается качество жизни сельскохозяйственных рабочих за счет сокращения тяжелого труда
    corecore