999 research outputs found

    Techno-economic analyses for vertical use cases in the 5G domain

    Get PDF
    International audienceThis paper provides techno-economic analyses on the network deployments to cover 4 key verticals, under 5G-NR. These verticals, namely Automotive, Smart city, Long range connectivity and Disaster and emergency support, were chosen to reflect the ONE5G project objective of investigating environments from densely populated cities ("Megacity") to large underserved areas. The work presented covers the network deployment framework including common centralization strategies and the main cost factors. Initial results presented for long range connectivity and emergency support networks provide the cost trade-offs in different deployment options and cost sensitivity to some of the parameters

    Techno-economic analysis of a 5G network in Spain

    Get PDF
    Information society and mobile society are two concepts that are both linked and undeniable. The first one refers to the necessity of high amount of information to develop most aspects of our lives, while the second one is related to the importance of mobile devices to get, analyse and use that information. In other words, every mobile device (that embraces not only mobile phones but also many other gadgets) has become a tool that shall interact with information. In order to fulfil those needs, technology has evolved, resulting into faster, more secure and more reliable networks. Needless to say, mobile networks are playing an indispensable role, as long as the society is evolving to a more and more mobile one, as above mentioned. Furthermore, new applications that had not been even imagined years ago must be fulfilled as well (i.e. smart cities). There are many industries that carry the weight of this progress. Companies of various sectors of our economy must develop each piece of the puzzle to ensure that the jigsaw is solved. Another important player should not be forgotten. The regulatory institutions and frameworks must coordinate all this investigations and progress in order to assure the universality, integrity and reachability of itself. The purpose of this document is to consider what the mobile communications needs of today’s society are, what they will be on a short, mid and long run, and how can they be solved. To face this task, the two main actors above mentioned will be taken into account. From the regulatory perspective, the proposals and law measures (i.e. IMT-2020 and new frequency allocations) must be considered, as well as the technical requirements for 5G generation, whether to be considered the subsequent evolution of LTE network or a new network, or even both. From the mobile companies’ point of view, a dense analysis on technical solutions to reach the above mentioned requirements will be followed by an economic analysis to discuss the profitability of the deployment of a 5G network. It must be understood that this study contemplates several scenarios, due to the different possibilities in terms of the spectrum policies and demand evolution in the forthcoming years. To this end, the several scenarios combined with the different cases of use must be taken into account, as well as many other KPIs. The coherent combination and analysis of all this parameters will reveal the requirements’ feasibility amongst varying scenarios.Ingeniería en Tecnologías de Telecomunicació

    Techno-economics of 5G transport deployments

    Get PDF
    Network densification is a crucial enabler for 5G, requiring the installation of a large number of devices and/or cables for the 5G transport network. This invited paper provides a techno-economic study focusing on adopting microwave and fiber equipment for 5G transport network deployments. Different architectures for low layer split supporting latency critical services are considered

    5G network slicing for rural connectivity: multi-tenancy in wireless networks

    Get PDF
    As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work.As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work

    Techno-economics of Fiber vs. Microwave for Mobile Transport Network Deployments [Invited]

    Get PDF
    One of the challenges for network operators is to design and deploy cost-efficient transport networks (TNs) to meet the high capacity and strict latency/reliability requirements of today’s emerging services. Therefore, they need to consider different aspects, including the appropriate technology, the level of reconfigurability, and the functional split option. A crucial aspect of network design is assessing the impact of these aspects against the total cost of ownership (TCO), latency, and reliability performance of a given solution. For this reason, this paper proposes a framework to investigate the TCO, latency, and reliability performance of a set of fiber and microwave-based TN architectures. They are categorized based on their baseband functional split option and the reconfigurability capabilities of the equipment used. The results, based on real data from a non-incumbent operator, show that in most of the considered scenarios, a microwavebased TN exhibits lower TCO than a fiber-based one. The TCO gain may vary with the choice of the functional split option, geo-type, reconfigurability features, fiber trenching costs, and cost of microwave equipment, with a more significant impact in a dense urban geo-type, where for a low layer functional split option the fiber- and microwave-based architectures have a comparable TCO. Finally, it was found that the considered fiber and microwave architectures have almost similar average latency and connection availability performance. Both are suitable to meet the service requirements of 5G and beyond 5G services in most of the considered scenarios. Only in extreme latency-critical scenarios, a small number of the cells might not fully satisfy the latency requirements of a low layer split option due to multiple microwave hops in the microwave-based architecture

    Deploying an NFV-Based Experimentation Scenario for 5G Solutions in Underserved Areas

    Get PDF
    Presently, a significant part of the world population does not have Internet access. The fifth-generation cellular network technology evolution (5G) is focused on reducing latency, increasing the available bandwidth, and enhancing network performance. However, researchers and companies have not invested enough effort into the deployment of the Internet in remote/rural/undeveloped areas for different techno-economic reasons. This article presents the result of a collaboration between Brazil and the European Union, introducing the steps designed to create a fully operational experimentation scenario with the main purpose of integrating the different achievements of the H2020 5G-RANGE project so that they can be trialed together into a 5G networking use case. The scenario encompasses (i) a novel radio access network that targets a bandwidth of 100 Mb/s in a cell radius of 50 km, and (ii) a network of Small Unmanned Aerial Vehicles (SUAV). This set of SUAVs is NFV-enabled, on top of which Virtual Network Functions (VNF) can be automatically deployed to support occasional network communications beyond the boundaries of the 5G-RANGE radio cells. The whole deployment implies the use of a virtual private overlay network enabling the preliminary validation of the scenario components from their respective remote locations, and simplifying their subsequent integration into a single local demonstrator, the configuration of the required GRE/IPSec tunnels, the integration of the new 5G-RANGE physical, MAC and network layer components and the overall validation with voice and data services

    Tele-Economics in MTC: what numbers would not show

    Full text link

    NFV Orchestration over Disaggregated Metro Optical Networks with End-to-End Multi-Layer Slicing enabling Crowdsourced Live Video Streaming

    Get PDF
    Network infrastructure must support emerging applications, fulfill 5G requirements, and respond to the sudden increase of societal need for remote communications. Remarkably, crowdsourced live video streaming (CLVS) challenges operators' infrastructure with tides of users attending major sport or public events that demand high bandwidth and low latency jointly with computing capabilities at the networks' edge. The Metro-Haul project entered the scene proposing a cost-effective, agile, and disaggregated infrastructure for the metro segment encompassing optical and packet resources jointly with computing capabilities. Recently, a major Metro-Haul outcome took the form of a field trial of network function virtualization (NFV) orchestration over the multi-layer packet and disaggregated optical network testbed that demonstrated a CLVS use case. We showcased the average service creation time below 5 min, which met the key performance indicator as defined by the 5G infrastructure public private partnership. In this paper, we expand our field trial demonstration with a detailed view of the Metro-Haul testbed for the CLVS use case, the employed components, and their performance. The throughput of the service is increased from approximately 9.6 Gbps up to 35 Gbps per virtual local area network with high-performance VNFs based on single-root input/output virtualization technology
    • …
    corecore