2,223 research outputs found

    Preliminary Results on 3D Channel Modeling: From Theory to Standardization

    Full text link
    Three dimensional beamforming (3D) (also elevation beamforming) is now gaining a growing interest among researchers in wireless communication. The reason can be attributed to its potential to enable a variety of strategies like sector or user specific elevation beamforming and cell-splitting. Since these techniques cannot be directly supported by current LTE releases, the 3GPP is now working on defining the required technical specifications. In particular, a large effort is currently made to get accurate 3D channel models that support the elevation dimension. This step is necessary as it will evaluate the potential of 3D and FD(Full Dimensional) beamforming techniques to benefit from the richness of real channels. This work aims at presenting the on-going 3GPP study item "Study on 3D-channel model for Elevation Beamforming and FD-MIMO studies for LTE", and positioning it with respect to previous standardization works

    A Novel Beamformed Control Channel Design for LTE with Full Dimension-MIMO

    Get PDF
    The Full Dimension-MIMO (FD-MIMO) technology is capable of achieving huge improvements in network throughput with simultaneous connectivity of a large number of mobile wireless devices, unmanned aerial vehicles, and the Internet of Things (IoT). In FD-MIMO, with a large number of antennae at the base station and the ability to perform beamforming, the capacity of the physical downlink shared channel (PDSCH) has increased a lot. However, the current specifications of the 3rd Generation Partnership Project (3GPP) does not allow the base station to perform beamforming techniques for the physical downlink control channel (PDCCH), and hence, PDCCH has neither the capacity nor the coverage of PDSCH. Therefore, PDCCH capacity will still limit the performance of a network as it dictates the number of users that can be scheduled at a given time instant. In Release 11, 3GPP introduced enhanced PDCCH (EPDCCH) to increase the PDCCH capacity at the cost of sacrificing the PDSCH resources. The problem of enhancing the PDCCH capacity within the available control channel resources has not been addressed yet in the literature. Hence, in this paper, we propose a novel beamformed PDCCH (BF-PDCCH) design which is aligned to the 3GPP specifications and requires simple software changes at the base station. We rely on the sounding reference signals transmitted in the uplink to decide the best beam for a user and ingeniously schedule the users in PDCCH. We perform system level simulations to evaluate the performance of the proposed design and show that the proposed BF-PDCCH achieves larger network throughput when compared with the current state of art algorithms, PDCCH and EPDCCH schemes

    Weighted Fair Multicast Multigroup Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is considered. This model is known as physical layer multicasting to multiple co-channel groups. In this context, the practical constraint of a maximum permitted power level radiated by each antenna is addressed. The per-antenna power constrained system is optimized in a maximum fairness sense with respect to predetermined quality of service weights. In other words, the worst scaled user is boosted by maximizing its weighted signal-to-interference plus noise ratio. A detailed solution to tackle the weighted max-min fair multigroup multicast problem under per-antenna power constraints is therefore derived. The implications of the novel constraints are investigated via prominent applications and paradigms. What is more, robust per-antenna constrained multigroup multicast beamforming solutions are proposed. Finally, an extensive performance evaluation quantifies the gains of the proposed algorithm over existing solutions and exhibits its accuracy over per-antenna power constrained systems.Comment: Under review in IEEE Transactions in Signal Processin

    Wireless Cellular Networks

    No full text
    When aiming for achieving high spectral efficiency in wireless cellular networks, cochannel interference (CCI) becomes the dominant performancelimiting factor. This article provides a survey of CCI mitigation techniques, where both active and passive approaches are discussed in the context of both open- and closed-loop designs.More explicitly, we considered both the family of flexible frequency-reuse (FFR)-aided and dynamic channel allocation (DCA)-aided interference avoidance techniques as well as smart antenna-aided interference mitigation techniques, which may be classified as active approach

    Adaptive Beamforming and Adaptive Modulation-Assisted Network Performance of Multiuser Detection-Aided FDD and TDD CDMA Systems

    No full text
    The network performance of a frequency division duplex and time division duplex (TDD) code division multiple access (CDMA)-based system is investigated using system parameters similar to those of the Universal Mobile Telecommunication System. The new call blocking and call dropping probabilities, the probability of low-quality access, and the required average transmit power are quantified both with and without adaptive antenna arrays (AAAs), as well as when subjected to shadow fading. In some of the scenarios investigated, the system’s user capacity is doubled with the advent of adaptive antennas. The employment of adaptive modulation techniques in conjunction with AAAs resulted in further significant network capacity gains. This is particularly so in the context of TDD CDMA, where the system’s capacity becomes poor without adaptive antennas and adaptive modulation owing to the high base station (BS) to BS interference inflicted as a consequence of potentially using all time slots in both the uplink and downlink of the emerging wireless Internet. Index Terms—Adaptive beamforming, adaptive modulation, code division multiple access (CDMA) systems, Universal Mobile Telecommunication System Terrestrial Radio Access (UTRA), wireless network performance

    Uplink beamforming for the FDD mode of UTRA

    Get PDF
    This paper presents some link level simulation results for the evaluation of adaptive antennas in the uplink of the FDD mode of UTRA (UMTS terrestrial radio access). Two families of algorithms were initially considered, the basic difference between them being their ability/disability to suppress the contribution from W-CDMA directional interfering sources. Two distinct schemes were established as representatives for each family and their performance was evaluated in presence of some illustrative interfering scenarios. In the light of the results it is shown that time-reference beamforming algorithms suffer from severe beam pattern distortion effects when applied as such. This in turn causes harsh performance degradation in terms of raw BER, especially at high SINR levels. It is shown that these shortcomings are essentially caused by the uplink multiplexing of the traffic channel, which is seen by the base station as a powerful interfering source coming from the direction of arrival of the desired user.Peer ReviewedPostprint (published version

    Sum Rate Maximizing Multigroup Multicast Beamforming under Per-antenna Power Constraints

    Get PDF
    A multi-antenna transmitter that conveys independent sets of common data to distinct groups of users is herein considered, a model known as physical layer multicasting to multiple co-channel groups. In the recently proposed context of per-antenna power constrained multigroup multicasting, the present work focuses on a novel system design that aims at maximizing the total achievable throughput. Towards increasing the system sum rate, the available power resources need to be allocated to well conditioned groups of users. A detailed solution to tackle the elaborate sum rate maximization multigroup multicast problem under per-antenna power constraints is therefore derived. Numerical results are presented to quantify the gains of the proposed algorithm over heuristic solutions. Besides Rayleigh faded channels, the solution is also applied to uniform linear array transmitters operating in the far field, where line-ofsight conditions are realized. In this setting, a sensitivity analysis with respect to the angular separation of co-group users is included. Finally, a simple scenario providing important intuitions for the sum rate maximizing multigroup multicast solutions is elaborated.Comment: Submitted to IEEE GlobeCom 2014, Austin, TX. arXiv admin note: substantial text overlap with arXiv:1406.7699, arXiv:1406.755
    • 

    corecore