297 research outputs found

    Filming protein fibrillogenesis in real time

    Get PDF
    Protein fibrillogenesis is a universal tool of nano-to-micro scale construction supporting different forms of biological function. Its exploitable potential in nanoscience and technology is substantial, but the direct observation of homogeneous fibre growth able to underpin a kinetic-based rationale for building customized nanostructures in situ is lacking. Here we introduce a kinetic model of de novo protein fibrillogenesis which we imaged at the nanoscale and in real time, filmed. The model helped to reveal that, in contrast to heterogeneous amyloid assemblies, homogeneous protein recruitment is principally characterized by uniform rates of cooperative growth at both ends of growing fibers, bi-directional growth, with lateral growth arrested at a post-seeding stage. The model provides a foundation for in situ engineering of sequence-prescribed fibrous architectures

    Growth and development of the third permanent molar in Paranthropus robustus from Swartkrans, South Africa

    Get PDF
    Third permanent molars (M3s) are the last tooth to form but have not been used to estimate age at dental maturation in early fossil hominins because direct histological evidence for the timing of their growth has been lacking. We investigated an isolated maxillary M3 (SK 835) from the 1.5 to 1.8-million-year-old (Mya) site of Swartkrans, South Africa, attributed to Paranthropus robustus. Tissue proportions of this specimen were assessed using 3D X-ray micro-tomography. Thin ground sections were used to image daily growth increments in enamel and dentine. Transmitted light microscopy and synchrotron X-ray fluorescence imaging revealed fluctuations in Ca concentration that coincide with daily growth increments. We used regional daily secretion rates and Sr marker-lines to reconstruct tooth growth along the enamel/dentine and then cementum/dentine boundaries. Cumulative growth curves for increasing enamel thickness and tooth height and age-of-attainment estimates for fractional stages of tooth formation differed from those in modern humans. These now provide additional means for assessing late maturation in early hominins. M3 formation took ≥ 7 years in SK 835 and completion of the roots would have occurred between 11 and 14 years of age. Estimated age at dental maturation in this fossil hominin compares well with what is known for living great apes

    Image Processing Techniques for Assessing Contractility in Isolated Adult Cardiac Myocytes

    Get PDF
    We describe a computational framework for the comprehensive assessment of contractile responses of enzymatically dissociated adult cardiac myocytes. The proposed methodology comprises the following stages: digital video recording of the contracting cell, edge preserving total variation-based image smoothing, segmentation of the smoothed images, contour extraction from the segmented images, shape representation by Fourier descriptors, and contractility assessment. The different stages are variants of mathematically sound and computationally robust algorithms very well established in the image processing community. The physiologic application of the methodology is evaluated by assessing overall contraction in enzymatically dissociated adult rat cardiocytes. Our results demonstrate the effectiveness of the proposed approach in characterizing the true, two-dimensional, “shortening” in the contraction process of adult cardiocytes. We compare the performance of the proposed method to that of a popular edge detection system in the literature. The proposed method not only provides a more comprehensive assessment of the myocyte contraction process but also can potentially eliminate historical concerns and sources of errors caused by myocyte rotation or translation during contraction. Furthermore, the versatility of the image processing techniques makes the method suitable for determining myocyte shortening in cells that usually bend or move during contraction. The proposed method can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease modeling, transgeneity, or other common applications to mammalian cardiocytes

    Strain variations in a seismogenic normal fault (Baza Sub-basin, Betic Chain): Insights from magnetic fabrics (AMS)

    Get PDF
    AMS and structural analysis are here applied to study the deformed zone associated with a large-scale, active normal fault in the central Betic Cordillera (Spain), namely the Baza fault system, to determine: i) the kinematics of structures and their relation with fault zone architecture and segmentation degree, ii) the correlation between deformational structures and the different types of magnetic fabrics and iii) the evolution of magnetic fabrics patterns, from sedimentary to shear-related, associated with normal faults. Five outcrops (969 samples) were analysed along the fault trace, which shows different degrees of segmentation along strike and strong localization of deformation along narrow fault zones. A first, main set of magnetic fabric data corroborates the normal kinematics of the Baza fault, showing magnetic lineations parallel to the dip-slip, transport direction. A second, secondary set of magnetic lineations, is parallel to the intersection lineation, and can be related to less intense deformation in the fault rocks. Furthermore, a detailed study (523 samples) of a trench excavated across the fault zone, where two fault splays tend to coalesce in a linkage relay zone indicates that i) lithology and distance to fault planes are two factors that control the development of extension-related magnetic fabrics in weakly deformed sediments, ii) the development of shear-related fabrics in fault zones entails the mechanical rotation of minerals, iii) different orientation of magnetic lineations are related to different intensity of bulk deformation and iv) magnetic lineation is useful to define local deviations of deformation axes produced by changes in the local extension direction (from fault-perpendicular to fault-parallel extension) in the linkage zone between adjacent fault splays
    corecore