20,467 research outputs found

    Power efficient job scheduling by predicting the impact of processor manufacturing variability

    Get PDF
    Modern CPUs suffer from performance and power consumption variability due to the manufacturing process. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this work we show that parallel systems benefit from taking into account the consequences of manufacturing variability when making scheduling decisions at the job scheduler level. We also show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensure that power consumption stays under a system-wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications, utilizing up to 4096 cores in total. We demonstrate that they decrease job turnaround time, compared to contemporary scheduling policies used on production clusters, up to 31% while saving up to 5.5% energy.Postprint (author's final draft

    Improving efficiency and resilience in large-scale computing systems through analytics and data-driven management

    Full text link
    Applications running in large-scale computing systems such as high performance computing (HPC) or cloud data centers are essential to many aspects of modern society, from weather forecasting to financial services. As the number and size of data centers increase with the growing computing demand, scalable and efficient management becomes crucial. However, data center management is a challenging task due to the complex interactions between applications, middleware, and hardware layers such as processors, network, and cooling units. This thesis claims that to improve robustness and efficiency of large-scale computing systems, significantly higher levels of automated support than what is available in today's systems are needed, and this automation should leverage the data continuously collected from various system layers. Towards this claim, we propose novel methodologies to automatically diagnose the root causes of performance and configuration problems and to improve efficiency through data-driven system management. We first propose a framework to diagnose software and hardware anomalies that cause undesired performance variations in large-scale computing systems. We show that by training machine learning models on resource usage and performance data collected from servers, our approach successfully diagnoses 98% of the injected anomalies at runtime in real-world HPC clusters with negligible computational overhead. We then introduce an analytics framework to address another major source of performance anomalies in cloud data centers: software misconfigurations. Our framework discovers and extracts configuration information from cloud instances such as containers or virtual machines. This is the first framework to provide comprehensive visibility into software configurations in multi-tenant cloud platforms, enabling systematic analysis for validating the correctness of software configurations. This thesis also contributes to the design of robust and efficient system management methods that leverage continuously monitored resource usage data. To improve performance under power constraints, we propose a workload- and cooling-aware power budgeting algorithm that distributes the available power among servers and cooling units in a data center, achieving up to 21% improvement in throughput per Watt compared to the state-of-the-art. Additionally, we design a network- and communication-aware HPC workload placement policy that reduces communication overhead by up to 30% in terms of hop-bytes compared to existing policies.2019-07-02T00:00:00

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    A Report Card for the New York City Housing Authority (NYCHA): Residents' Evaluation of NYCHA and Recommendations for Improvement

    Get PDF
    From May 2010 through April 2011, members of five community organizations, CAAAV: Organizing Asian Communities, Community Voices Heard (CVH), Families United for Racial and Economic Equality (FUREE), Good Old Lower East Side (GOLES), and Mothers on the Move (MOM), with support from the Community Development Project (CDP) of the Urban Justice Center, collected 1,446 report cards that asked public housing residents to "grade" the New York City Housing Authority (NYCHA). Residents graded NYCHA--using a traditional letter grading scale--on management, the centralized calling center, repairs, and maintenance of buildings and developments. Public housing residents were involved in every stage of the research and participated in the development of report card questions, research findings, and policy recommendations. NYCHA received failing grades in 10 of the 26 categories

    Improving data center efficiency through smart grid integration and intelligent analytics

    Full text link
    The ever-increasing growth of the demand in IT computing, storage and large-scale cloud services leads to the proliferation of data centers that consist of (tens of) thousands of servers. As a result, data centers are now among the largest electricity consumers worldwide. Data center energy and resource efficiency has started to receive significant attention due to its economical, environmental, and performance impacts. In tandem, facing increasing challenges in stabilizing the power grids due to growing needs of intermittent renewable energy integration, power market operators have started to offer a number of demand response (DR) opportunities for energy consumers (such as data centers) to receive credits by modulating their power consumption dynamically following specific requirements. This dissertation claims that data centers have strong capabilities to emerge as major enablers of substantial electricity integration from renewables. The participation of data centers into emerging DR, such as regulation service reserves (RSRs), enables the growth of the data center in a sustainable, environmentally neutral, or even beneficial way, while also significantly reducing data center electricity costs. In this dissertation, we first model data center participation in DR, and then propose runtime policies to dynamically modulate data center power in response to independent system operator (ISO) requests, leveraging advanced server power and workload management techniques. We also propose energy and reserve bidding strategies to minimize the data center energy cost. Our results demonstrate that a typical data center can achieve up to 44% monetary savings in its electricity cost with RSR provision, dramatically surpassing savings achieved by traditional energy management strategies. In addition, we investigate the capabilities and benefits of various types of energy storage devices (ESDs) in DR. Finally, we demonstrate RSR provision in practice on a real server. In addition to its contributions on improving data center energy efficiency, this dissertation also proposes a novel method to address data center management efficiency. We propose an intelligent system analytics approach, "discovery by example", which leverages fingerprinting and machine learning methods to automatically discover software and system changes. Our approach eases runtime data center introspection and reduces the cost of system management.2018-11-04T00:00:00

    Budgeting for Growth and Prosperity: A Long-Term Plan to Balance the Budget, Grow the Economy, and Strengthen the Middle Class

    Get PDF
    Proposes reducing the deficit by investing in education, infrastructure, and technology; spending more efficiently; bolstering the social safety net; containing healthcare costs; simplifying the tax code; and raising gas and financial transaction taxes

    Aerospace management techniques: Commercial and governmental applications

    Get PDF
    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques

    Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing

    Full text link
    Participating in demand response programs is a promising tool for reducing energy costs in data centers by modulating energy consumption. Towards this end, data centers can employ a rich set of resource management knobs, such as workload shifting and dynamic server provisioning. Nonetheless, these knobs may not be readily available in a cloud data center (CDC) that serves cloud tenants/users, because workloads in CDCs are managed by tenants themselves who are typically charged based on a usage-based or flat-rate pricing and often have no incentive to cooperate with the CDC operator for demand response and cost saving. Towards breaking such "split incentive" hurdle, a few recent studies have tried market-based mechanisms, such as dynamic pricing, inside CDCs. However, such mechanisms often rely on complex designs that are hard to implement and difficult to cope with by tenants. To address this limitation, we propose a novel incentive mechanism that is not dynamic, i.e., it keeps pricing for cloud resources unchanged for a long period. While it charges tenants based on a Usage-based Pricing (UP) as used by today's major cloud operators, it rewards tenants proportionally based on the time length that tenants set as deadlines for completing their workloads. This new mechanism is called Usage-based Pricing with Monetary Reward (UPMR). We demonstrate the effectiveness of UPMR both analytically and empirically. We show that UPMR can reduce the CDC operator's energy cost by 12.9% while increasing its profit by 4.9%, compared to the state-of-the-art approaches used by today's CDC operators to charge their tenants
    • …
    corecore