1,679 research outputs found

    Computing centroids in current-mode technique

    Get PDF
    A novel current-mode circuit for calculating the centre of mass of a discrete distribution of currents is described. It is simple and compact, an ideal building block for VLSI analogue IC design. The design principles are presented as well as the simulated behaviour of a one-dimensional implementation

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Process-tolerant VLSI neural networks for applications in optimisation

    Get PDF

    Topology optimization of structured power/ground networks

    Full text link

    Hardware Learning in Analogue VLSI Neural Networks

    Get PDF

    General analytical solutions for DC/AC circuit-network analysis

    Get PDF
    All authors thank the Scottish University Physics Alliance (SUPA) support. NR also acknowledges de support of PEDECIBA, Uruguay. MSB acknowledges the support of EPSRC grant Ref. EP/I032606/1. Open access via Springer Compact Agreement.Peer reviewedPublisher PD
    corecore