1,653 research outputs found

    Mosaics from arbitrary stereo video sequences

    Get PDF
    lthough mosaics are well established as a compact and non-redundant representation of image sequences, their application still suffers from restrictions of the camera motion or has to deal with parallax errors. We present an approach that allows construction of mosaics from arbitrary motion of a head-mounted camera pair. As there are no parallax errors when creating mosaics from planar objects, our approach first decomposes the scene into planar sub-scenes from stereo vision and creates a mosaic for each plane individually. The power of the presented mosaicing technique is evaluated in an office scenario, including the analysis of the parallax error

    Enhancement of Underwater Video Mosaics for Post-Processing

    Get PDF
    Mosaics of seafloor created from still images or video acquired underwater have proved to be useful for construction of maps of forensic and archeological sites, species\u27 abundance estimates, habitat characterization, etc. Images taken by a camera mounted on a stable platform are registered (at first pair-wise and then globally) and assembled in a high resolution visual map of the surveyed area. While this map is usually sufficient for a human orientation and even quantitative measurements, it often contains artifacts that complicate an automatic post-processing (for example, extraction of shapes for organism counting, or segmentation for habitat characterization). The most prominent artifacts are inter-frame seams caused by inhomogeneous artificial illumination, and local feature misalignments due to parallax effects - result of an attempt to represent a 3D world on a 2D map. In this paper we propose two image processing techniques for mosaic quality enhancement - median mosaic-based illumination correction suppressing appearance of inter-frame seams, and micro warping decreasing influence of parallax effects

    Improvement of Image Alignment Using Camera Attitude Information

    Get PDF
    We discuss a proposed technique for incorporation of information from a variety of sensors in a video imagery processing pipeline. The auxiliary information allows one to simplify computations, effectively reducing the number of independent parameters in the transformation model. The mosaics produced by this technique are adequate for many applications, in particular habitat mapping. The algorithm, demonstrated through simulations and hardware configuration, is described in detai

    Retrieval and Registration of Long-Range Overlapping Frames for Scalable Mosaicking of In Vivo Fetoscopy

    Get PDF
    Purpose: The standard clinical treatment of Twin-to-Twin Transfusion Syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired. Methods: To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence of artifacts, among others), we propose the following contributions: (i) robust pairwise registration is achieved by aligning the orientation of the image gradients, and (ii) difficulties regarding long-range consistency (e.g. due to the presence of outliers) is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their respective location in time. Results: In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in comparison to two standard baselines. Conclusion: This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences. Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.Comment: Accepted for publication in International Journal of Computer Assisted Radiology and Surgery (IJCARS

    Laryngoscopic Image Stitching for View Enhancement and Documentation - First Experiences

    Get PDF
    One known problem within laryngoscopy is the spatially limited view onto the hypopharynx and the larynx through the endoscope. To examine the complete larynx and hypopharynx, the laryngoscope can be rotated about its main axis, and hence the physician obtains a complete view. If such examinations are captured using endoscopic video, the examination can be reviewed in detail at a later time. Nevertheless, in order to document the examination with a single representative image, a panorama image can be computed for archiving and enhanced documentation. Twenty patients with various clinical findings were examined with a 70 rigid laryngoscope, and the video sequences were digitally stored. The image sequence for each patient was then post-processed using an image stitching tool based on SIFT features, the RANSAC approach and blending. As a result, endoscopic panorama images of the larynx and pharynx were obtained for each video sequence. The proposed approach of image stitching for laryngoscopic video sequences offers a new tool for enhanced visual examination and documentation of morphologic characteristics of the larynx and the hypopharynx

    Low-Cost Compressive Sensing for Color Video and Depth

    Full text link
    A simple and inexpensive (low-power and low-bandwidth) modification is made to a conventional off-the-shelf color video camera, from which we recover {multiple} color frames for each of the original measured frames, and each of the recovered frames can be focused at a different depth. The recovery of multiple frames for each measured frame is made possible via high-speed coding, manifested via translation of a single coded aperture; the inexpensive translation is constituted by mounting the binary code on a piezoelectric device. To simultaneously recover depth information, a {liquid} lens is modulated at high speed, via a variable voltage. Consequently, during the aforementioned coding process, the liquid lens allows the camera to sweep the focus through multiple depths. In addition to designing and implementing the camera, fast recovery is achieved by an anytime algorithm exploiting the group-sparsity of wavelet/DCT coefficients.Comment: 8 pages, CVPR 201
    corecore