117,083 research outputs found

    Bounded Model Checking of Industrial Code

    Get PDF
    Abstract: Bounded Model Checking(BMC) is an effective and precise static analysis technique that reduces program verification to satisfiability (SAT) solving. However, with a few exceptions, BMC is not actively used in software industry, especially, when compared to dynamic analysis techniques such as fuzzing, or light-weight formal static analysis. This thesis describes our experience of applying BMC to industrial code using a novel BMC tool SEABMC. We present three contributions: First, a case study of (re)verifying the aws-c-common library from AWS using SEABMC and KLEE. This study explores the methodology from the perspective of three research questions: (a) can proof artifacts be used across verification tools; (b) are there bugs in verified code; and (c) can specifications be improved. To study these questions, we port the verification tasks for aws-c-common library to SEAHORN and KLEE. We show the benefits of using compiler semantics and cross-checking specifications with different verification techniques, and call for standardizing proof library extensions to increase specification reuse. Second, a description of SEABMC - a novel BMC engine for SEAHORN. We start with a custom IR (called SEA-IR) that explicitly purifies all memory operations by explicating dependencies between them. We then run program transformations and allow for generating many different styles of verification conditions. To support memory safety checking, we extend our base approach with fat pointers and shadow bits of memory to keep track of metadata, such as the size of a pointed-to object. To evaluate SEABMC, we use the aws-c-common library from AWS as a benchmark and compare with CBMC, SMACK, and KLEE. We show that SEABMC is capable of providing an order of magnitude improvement compared with state-of-the-art. Third, a case study of extending SEABMC to work with Rust - a young systems programming language. We ask three research questions: (a) can SEABMC be used to verify Rust programs easily; (b) can the specification style of aws-c-common be applied successfully to Rust programs; and (c) can verification become more efficient when using higher level language information. We answer these questions by verifying aspects of the Rust standard library using SEAURCHIN, an extension of SEABMC for Rust

    On the Verification of a WiMax Design Using Symbolic Simulation

    Get PDF
    In top-down multi-level design methodologies, design descriptions at higher levels of abstraction are incrementally refined to the final realizations. Simulation based techniques have traditionally been used to verify that such model refinements do not change the design functionality. Unfortunately, with computer simulations it is not possible to completely check that a design transformation is correct in a reasonable amount of time, as the number of test patterns required to do so increase exponentially with the number of system state variables. In this paper, we propose a methodology for the verification of conformance of models generated at higher levels of abstraction in the design process to the design specifications. We model the system behavior using sequence of recurrence equations. We then use symbolic simulation together with equivalence checking and property checking techniques for design verification. Using our proposed method, we have verified the equivalence of three WiMax system models at different levels of design abstraction, and the correctness of various system properties on those models. Our symbolic modeling and verification experiments show that the proposed verification methodology provides performance advantage over its numerical counterpart.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Fault Localization in Multi-Threaded C Programs using Bounded Model Checking (extended version)

    Full text link
    Software debugging is a very time-consuming process, which is even worse for multi-threaded programs, due to the non-deterministic behavior of thread-scheduling algorithms. However, the debugging time may be greatly reduced, if automatic methods are used for localizing faults. In this study, a new method for fault localization, in multi-threaded C programs, is proposed. It transforms a multi-threaded program into a corresponding sequential one and then uses a fault-diagnosis method suitable for this type of program, in order to localize faults. The code transformation is implemented with rules and context switch information from counterexamples, which are typically generated by bounded model checkers. Experimental results show that the proposed method is effective, in such a way that sequential fault-localization methods can be extended to multi-threaded programs.Comment: extended version of paper published at SBESC'1

    Modular Verification of Interrupt-Driven Software

    Full text link
    Interrupts have been widely used in safety-critical computer systems to handle outside stimuli and interact with the hardware, but reasoning about interrupt-driven software remains a difficult task. Although a number of static verification techniques have been proposed for interrupt-driven software, they often rely on constructing a monolithic verification model. Furthermore, they do not precisely capture the complete execution semantics of interrupts such as nested invocations of interrupt handlers. To overcome these limitations, we propose an abstract interpretation framework for static verification of interrupt-driven software that first analyzes each interrupt handler in isolation as if it were a sequential program, and then propagates the result to other interrupt handlers. This iterative process continues until results from all interrupt handlers reach a fixed point. Since our method never constructs the global model, it avoids the up-front blowup in model construction that hampers existing, non-modular, verification techniques. We have evaluated our method on 35 interrupt-driven applications with a total of 22,541 lines of code. Our results show the method is able to quickly and more accurately analyze the behavior of interrupts.Comment: preprint of the ASE 2017 pape

    Thread-Modular Static Analysis for Relaxed Memory Models

    Full text link
    We propose a memory-model-aware static program analysis method for accurately analyzing the behavior of concurrent software running on processors with weak consistency models such as x86-TSO, SPARC-PSO, and SPARC-RMO. At the center of our method is a unified framework for deciding the feasibility of inter-thread interferences to avoid propagating spurious data flows during static analysis and thus boost the performance of the static analyzer. We formulate the checking of interference feasibility as a set of Datalog rules which are both efficiently solvable and general enough to capture a range of hardware-level memory models. Compared to existing techniques, our method can significantly reduce the number of bogus alarms as well as unsound proofs. We implemented the method and evaluated it on a large set of multithreaded C programs. Our experiments showthe method significantly outperforms state-of-the-art techniques in terms of accuracy with only moderate run-time overhead.Comment: revised version of the ESEC/FSE 2017 pape
    • …
    corecore