2,774 research outputs found

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    Cosmological Simulations on a Grid of Computers

    Get PDF
    The work presented in this paper aims at restricting the input parameter values of the semi-analytical model used in GALICS and MOMAF, so as to derive which parameters influence the most the results, e.g., star formation, feedback and halo recycling efficiencies, etc. Our approach is to proceed empirically: we run lots of simulations and derive the correct ranges of values. The computation time needed is so large, that we need to run on a grid of computers. Hence, we model GALICS and MOMAF execution time and output files size, and run the simulation using a grid middleware: DIET. All the complexity of accessing resources, scheduling simulations and managing data is harnessed by DIET and hidden behind a web portal accessible to the users.Comment: Accepted and Published in AIP Conference Proceedings 1241, 2010, pages 816-82

    RAFDA: A Policy-Aware Middleware Supporting the Flexible Separation of Application Logic from Distribution

    Get PDF
    Middleware technologies often limit the way in which object classes may be used in distributed applications due to the fixed distribution policies that they impose. These policies permeate applications developed using existing middleware systems and force an unnatural encoding of application level semantics. For example, the application programmer has no direct control over inter-address-space parameter passing semantics. Semantics are fixed by the distribution topology of the application, which is dictated early in the design cycle. This creates applications that are brittle with respect to changes in distribution. This paper explores technology that provides control over the extent to which inter-address-space communication is exposed to programmers, in order to aid the creation, maintenance and evolution of distributed applications. The described system permits arbitrary objects in an application to be dynamically exposed for remote access, allowing applications to be written without concern for distribution. Programmers can conceal or expose the distributed nature of applications as required, permitting object placement and distribution boundaries to be decided late in the design cycle and even dynamically. Inter-address-space parameter passing semantics may also be decided independently of object implementation and at varying times in the design cycle, again possibly as late as run-time. Furthermore, transmission policy may be defined on a per-class, per-method or per-parameter basis, maximizing plasticity. This flexibility is of utility in the development of new distributed applications, and the creation of management and monitoring infrastructures for existing applications.Comment: Submitted to EuroSys 200

    Performance evaluation of a distributed integrative architecture for robotics

    Get PDF
    The eld of robotics employs a vast amount of coupled sub-systems. These need to interact cooperatively and concurrently in order to yield the desired results. Some hybrid algorithms also require intensive cooperative interactions internally. The architecture proposed lends it- self amenable to problem domains that require rigorous calculations that are usually impeded by the capacity of a single machine, and incompatibility issues between software computing elements. Implementations are abstracted away from the physical hardware for ease of de- velopment and competition in simulation leagues. Monolithic developments are complex, and the desire for decoupled architectures arises. Decoupling also lowers the threshold for using distributed and parallel resources. The ability to re-use and re-combine components on de- mand, therefore is essential, while maintaining the necessary degree of interaction. For this reason we propose to build software components on top of a Service Oriented Architecture (SOA) using Web Services. An additional bene t is platform independence regarding both the operating system and the implementation language. The robot soccer platform as well as the associated simulation leagues are the target domain for the development. Furthermore are machine vision and remote process control related portions of the architecture currently in development and testing for industrial environments. We provide numerical data based on the Python frameworks ZSI and SOAPpy undermining the suitability of this approach for the eld of robotics. Response times of signi cantly less than 50 ms even for fully interpreted, dynamic languages provides hard information showing the feasibility of Web Services based SOAs even in time critical robotic applications

    HLA high performance and real-time simulation studies with CERTI

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. Indeed, current HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to provide real-time capabilities to Run Time Infrastructures (RTI). This paper describes our approach focusing on achieving hard real-time properties for HLA federations through a complete state of the art on the related domain. Our paper also proposes a global bottom up approach from basic hardware and software basic requirements to experimental tests for validation of distributed real-time simulation with CERTI
    • 

    corecore