212 research outputs found

    Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Get PDF
    Amplitude-modulated (AM) laser imaging is a promising technology for the production of accurate three-dimensional (3D) images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise) that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager ( = 405 nm) for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome). The obtained results confirm the validity of the proposed methods for optical noise rejection

    Improving underwater imaging in an amplitude-modulated laser system with radio frequency control technique

    Get PDF
    We present the results of an experiment aimed to demonstrate the low-pass filter dependence of water backscattered power in an amplitude-modulated laser scanner for underwater 3D imaging. We also demonstrate that improvements in target imaging are obtained by allowing the device to operate in the stop-band region. A simple model is described to account for the physics underlying the effect and suggesting future experimental schemes based on demodulated detection techniques

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    COMBAT SYSTEMS Volume 1. Sensor Elements Part I. Sensor Functional Characteristics

    Get PDF
    This document includes: CHAPTER 1. SIGNATURES, OBSERVABLES, & PROPAGATORS. CHAPTER 2. PROPAGATION OF ELECTROMAGNETIC RADIATION. I. – FUNDAMENTAL EFFECTS. CHAPTER 3. PROPAGATION OF ELECTROMAGNETIC RADIATION. II. – WEATHER EFFECTS. CHAPTER 4. PROPAGATION OF ELECTROMAGNETIC RADIATION. III. – REFRACTIVE EFFECTS. CHAPTER 5. PROPAGATION OF ELECTROMAGNETIC RADIATION IV. – OTHER ATMOSPHERIC AND UNDERWATER EFFECTS. CHAPTER 6. PROPAGATION OF ACOUSTIC RADIATION. CHAPTER 7. NUCLEAR RADIATION: ITS ORIGIN AND PROPAGATION. CHAPTER 8. RADIOMETRY, PHOTOMETRY, & RADIOMETRIC ANALYSIS. CHAPTER 9. SENSOR FUNCTIONS. CHAPTER 10. SEARCH. CHAPTER 11. DETECTION. CHAPTER 12. ESTIMATION. CHAPTER 13. MODULATION AND DEMODULATION. CHAPTER 14. IMAGING AND IMAGE-BASED PERCEPTION. CHAPTER 15. TRACKING. APPENDIX A. UNITS, PHYSICAL CONSTANTS, AND USEFUL CONVERSION FACTORS. APPENDIX B. FINITE DIFFERENCE AND FINITE ELEMENT TECHNIQUES. APPENDIX C. PROBABILITY AND STATISTICS. INDEX TO VOLUME 1. Note by author: Note: Boldface entries in the table of contents are not yet completed

    Holography: A survey

    Get PDF
    The development of holography and the state of the art in recording and displaying information, microscopy, motion, pictures, and television applications are discussed. In addition to optical holography, information is presented on microwave, acoustic, ultrasonic, and seismic holography. Other subjects include data processing, data storage, pattern recognition, and computer-generated holography. Diagrams of holographic installations are provided. Photographs of typical holographic applications are used to support the theoretical aspects

    Technical approaches, chapter 3, part E

    Get PDF
    Radar altimeters, scatterometers, and imaging radar are described in terms of their functions, future developments, constraints, and applications

    Single-photon detection techniques for underwater imaging

    Get PDF
    This Thesis investigates the potential of a single-photon depth profiling system for imaging in highly scattering underwater environments. This scanning system measured depth using the time-of-flight and the time-correlated single-photon counting (TCSPC) technique. The system comprised a pulsed laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Spectral transmittance measurements were performed on a number of different water samples in order to characterize the water types used in the experiments. This identified an optimum operational wavelength for each environment selected, which was in the wavelength region of 525 - 690 nm. Then, depth profiles measurements were performed in different scattering conditions, demonstrating high-resolution image re-construction for targets placed at stand-off distances up to nine attenuation lengths, using average optical power in the sub-milliwatt range. Depth and spatial resolution were investigated in several environments, demonstrating a depth resolution in the range of 500 μm to a few millimetres depending on the attenuation level of the medium. The angular resolution of the system was approximately 60 μrad in water with different levels of attenuation, illustrating that the narrow field of view helped preserve spatial resolution in the presence of high levels of forward scattering. Bespoke algorithms were developed for image reconstruction in order to recover depth, intensity and reflectivity information, and to investigate shorter acquisition times, illustrating the practicality of the approach for rapid frame rates. In addition, advanced signal processing approaches were used to investigate the potential of multispectral single-photon depth imaging in target discrimination and recognition, in free-space and underwater environments. Finally, a LiDAR model was developed and validated using experimental data. The model was used to estimate the performance of the system under a variety of scattering conditions and system parameters

    Modeling the Performance of a Laser for Tracking an Underwater Dynamic Target

    Get PDF
    CIVINS (Civilian Institutions) Thesis documentOptions for tracking dynamic underwater targets using optical methods is currently limited. This thesis examines optical reflectance intensities utilizing Lambert’s Reflection Model and based on a proposed underwater laser tracking system. Numerical analysis is performed through simulation to determine the detectable light intensities based on relationships between varying inputs such as angle of illumination and target position. Attenuation, noise, and laser beam spreading are included in the analysis. Simulation results suggest optical tracking exhibits complex relationships based on target location and illumination angle. Signal to Noise Ratios are a better indicator of system capabilities than received intensities. Signal reception does not necessarily confirm target capture in a multi-sensor network.http://archive.org/details/modelingperforma1094544418Civilia

    NASA Tech Briefs, July 2013

    Get PDF
    Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays; Multi-Dimensional Damage Detection for Surfaces and Structures; ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy; Autonomous Cryogenic Leak Detector for Improving Launch Site Operations; Submillimeter Planetary Atmospheric Chemistry Exploration Sounder; Method for Reduction of Silver Biocide Plating on Metal Surfaces; Silicon Micromachined Microlens Array for THz Antennas; Forward-Looking IED Detector Ground Penetrating Radar; Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication, Battery Charge Equalizer with Transformer Array; An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture; Dimmable Electronic Ballast for a Gas Discharge Lamp; Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology; Enhanced Schapery Theory Software Development for Modeling Failure of Fiber-Reinforced Laminates; High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants; Carbon Nanotube Microarrays Grown on Nanoflake Substrates; Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids; Microgravity Drill and Anchor System; 20 Granular Media-Based Tunable Passive Vibration Suppressor; 21 Miga Aero Actuator and 2D Machined Mechanical Binary Latch; Micro-XRF for In Situ Geological Exploration of Other Planets; Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power; Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms; Miniaturized, High-Speed, Modulated X-Ray Source; Hollow-Fiber Spacesuit Water Membrane Evaporator 25 High-Power Single-Mode 2.65-micrometers InGaAsSb/AlInGaAsSb Diode Lasers; Optical Device for Converting a Laser Beam Into Two Co-aligned but Oppositely Directed Beams; A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging; X-Ray Diffractive Optics; SynGenics Optimization System (SynOptSys); 29 CFD Script for Rapid TPS Damage Assessment; radEq Add-On Module for CFD Solver Loci-CHEM; Science Opportunity Analyzer (SOA) Version 8; 30 Autonomous Byte Stream Randomizer; Distributed Engine Control Empirical/Analytical Verification Tools; Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data; Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing; Linked Autonomous Interplanetary Satellite Orbit Navigation; Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing; Scheduling Operations for Massive Heterogeneous Clusters; Deepak Condenser Model (DeCoM); Flight Software Math Library; Recirculating 1-K-Pot for Pulse-Tube Cryostats; 35 Method for Processing Lunar Regolith Using Microwaves; Wells for In Situ Extraction of Volatiles from Regolith (WIEVR); and Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft
    • …
    corecore