3,102 research outputs found

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    MeshAdv: Adversarial Meshes for Visual Recognition

    Full text link
    Highly expressive models such as deep neural networks (DNNs) have been widely applied to various applications. However, recent studies show that DNNs are vulnerable to adversarial examples, which are carefully crafted inputs aiming to mislead the predictions. Currently, the majority of these studies have focused on perturbation added to image pixels, while such manipulation is not physically realistic. Some works have tried to overcome this limitation by attaching printable 2D patches or painting patterns onto surfaces, but can be potentially defended because 3D shape features are intact. In this paper, we propose meshAdv to generate "adversarial 3D meshes" from objects that have rich shape features but minimal textural variation. To manipulate the shape or texture of the objects, we make use of a differentiable renderer to compute accurate shading on the shape and propagate the gradient. Extensive experiments show that the generated 3D meshes are effective in attacking both classifiers and object detectors. We evaluate the attack under different viewpoints. In addition, we design a pipeline to perform black-box attack on a photorealistic renderer with unknown rendering parameters.Comment: Published in IEEE CVPR201
    corecore