26,317 research outputs found

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes

    Frequency shifting approach towards textual transcription of heartbeat sounds

    Get PDF
    Auscultation is an approach for diagnosing many cardiovascular problems. Automatic analysis of heartbeat sounds and extraction of its audio features can assist physicians towards diagnosing diseases. Textual transcription allows recording a continuous heart sound stream using a text format which can be stored in very small memory in comparison with other audio formats. In addition, a text-based data allows applying indexing and searching techniques to access to the critical events. Hence, the transcribed heartbeat sounds provides useful information to monitor the behavior of a patient for the long duration of time. This paper proposes a frequency shifting method in order to improve the performance of the transcription. The main objective of this study is to transfer the heartbeat sounds to the music domain. The proposed technique is tested with 100 samples which were recorded from different heart diseases categories. The observed results show that, the proposed shifting method significantly improves the performance of the transcription

    Automatic transcription of traditional Turkish art music recordings: A computational ethnomusicology appraoach

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2012Includes bibliographical references (leaves: 96-109)Text in English; Abstract: Turkish and Englishxi, 131 leavesMusic Information Retrieval (MIR) is a recent research field, as an outcome of the revolutionary change in the distribution of, and access to the music recordings. Although MIR research already covers a wide range of applications, MIR methods are primarily developed for western music. Since the most important dimensions of music are fundamentally different in western and non-western musics, developing MIR methods for non-western musics is a challenging task. On the other hand, the discipline of ethnomusicology supplies some useful insights for the computational studies on nonwestern musics. Therefore, this thesis overcomes this challenging task within the framework of computational ethnomusicology, a new emerging interdisciplinary research domain. As a result, the main contribution of this study is the development of an automatic transcription system for traditional Turkish art music (Turkish music) for the first time in the literature. In order to develop such system for Turkish music, several subjects are also studied for the first time in the literature which constitute other contributions of the thesis: Automatic music transcription problem is considered from the perspective of ethnomusicology, an automatic makam recognition system is developed and the scale theory of Turkish music is evaluated computationally for nine makamlar in order to understand whether it can be used for makam detection. Furthermore, there is a wide geographical region such as Middle-East, North Africa and Asia sharing similarities with Turkish music. Therefore our study would also provide more relevant techniques and methods than the MIR literature for the study of these non-western musics

    Automatic transcription of music using deep learning techniques

    Get PDF
    Music transcription is the problem of detecting notes that are being played in a musical piece. This is a difficult task that only trained people are capable of doing. Due to its difficulty, there have been a high interest in automate it. However, automatic music transcription encompasses several fields of research such as, digital signal processing, machine learning, music theory and cognition, pitch perception and psychoacoustics. All of this, makes automatic music transcription an hard problem to solve. In this work we present a novel approach of automatically transcribing piano musical pieces using deep learning techniques. We take advantage of deep learning techniques to build several classifiers, each one responsible for detecting only one musical note. In theory, this division of work would enhance the ability of each classifier to transcribe. Apart from that, we also apply two additional stages, pre-processing and post-processing, to improve the efficiency of our system. The pre-processing stage aims at improving the quality of the input data before the classification/transcription stage, while the post-processing aims at fixing errors originated during the classification stage. In the initial steps, preliminary experiments have been performed to fine tune our model, in both three stages: pre-processing, classification and post-processing. The experimental setup, using those optimized techniques and parameters, is shown and a comparison is given with other two state-of-the-art works that apply the same dataset as well as the same deep learning technique but using a different approach. By different approach we mean that a single neural network is used to detect all the musical notes rather than one neural network per each note. Our approach was able to surpass in frame-based metrics these works, while reaching close results in onset-based metrics, demonstrating the feasability of our approach

    Investigation of techniques for automatic polyphonic music transcription using wavelets.

    Get PDF
    Thesis (M.Sc) - University of KwaZulu-Natal, Pietermaritzburg, 2009.It has been said (although sadly I have no source) that music is one of the most useful yet useless phenomena known to mankind. Useless in that it has, apparently, no tangible or immediately practical function in our lives, but extremely useful in that it is a truly universal language between human beings, which transcends boundaries and allows us to express ourselves and experience emotions in rather profound ways. For the majority of us, music exists to be listened to, appreciated, admired (sometimes reviled) but generally as some sort of stimulus for our auditory senses. Some of us feel the need to produce music, perhaps simply for our own creative enjoyment, or maybe because we crave the power it lends us to be able to inspire feelings in others. For those of us who love to know “the reason why” or “how things work” and wish to discover the secrets of music, arguably the greatest of all the arts, there can surely be no doubt that a fascinating world of mathematics, harmony and beauty awaits us. Perhaps the reason why music is able to convey such strong emotions in us is because we are (for whatever strange evolutionary reason or purpose) designed to be innately pattern pursuing, sequence searching and harmony hungry creatures. Music, as we shall discover in this research, is chock-a-block full of the most incredible patterns, which are just waiting to be deciphered

    Joint Multi-Pitch Detection Using Harmonic Envelope Estimation for Polyphonic Music Transcription

    Get PDF
    In this paper, a method for automatic transcription of music signals based on joint multiple-F0 estimation is proposed. As a time-frequency representation, the constant-Q resonator time-frequency image is employed, while a novel noise suppression technique based on pink noise assumption is applied in a preprocessing step. In the multiple-F0 estimation stage, the optimal tuning and inharmonicity parameters are computed and a salience function is proposed in order to select pitch candidates. For each pitch candidate combination, an overlapping partial treatment procedure is used, which is based on a novel spectral envelope estimation procedure for the log-frequency domain, in order to compute the harmonic envelope of candidate pitches. In order to select the optimal pitch combination for each time frame, a score function is proposed which combines spectral and temporal characteristics of the candidate pitches and also aims to suppress harmonic errors. For postprocessing, hidden Markov models (HMMs) and conditional random fields (CRFs) trained on MIDI data are employed, in order to boost transcription accuracy. The system was trained on isolated piano sounds from the MAPS database and was tested on classic and jazz recordings from the RWC database, as well as on recordings from a Disklavier piano. A comparison with several state-of-the-art systems is provided using a variety of error metrics, where encouraging results are indicated

    Automatic Segmentation of Broadcast News Audio using Self Similarity Matrix

    Full text link
    Generally audio news broadcast on radio is com- posed of music, commercials, news from correspondents and recorded statements in addition to the actual news read by the newsreader. When news transcripts are available, automatic segmentation of audio news broadcast to time align the audio with the text transcription to build frugal speech corpora is essential. We address the problem of identifying segmentation in the audio news broadcast corresponding to the news read by the newsreader so that they can be mapped to the text transcripts. The existing techniques produce sub-optimal solutions when used to extract newsreader read segments. In this paper, we propose a new technique which is able to identify the acoustic change points reliably using an acoustic Self Similarity Matrix (SSM). We describe the two pass technique in detail and verify its performance on real audio news broadcast of All India Radio for different languages.Comment: 4 pages, 5 image
    corecore