947 research outputs found

    Navigating Diverse Datasets in the Face of Uncertainty

    Get PDF
    When exploring big volumes of data, one of the challenging aspects is their diversity of origin. Multiple files that have not yet been ingested into a database system may contain information of interest to a researcher, who must curate, understand and sieve their content before being able to extract knowledge. Performance is one of the greatest difficulties in exploring these datasets. On the one hand, examining non-indexed, unprocessed files can be inefficient. On the other hand, any processing before its understanding introduces latency and potentially un- necessary work if the chosen schema matches poorly the data. We have surveyed the state-of-the-art and, fortunately, there exist multiple proposal of solutions to handle data in-situ performantly. Another major difficulty is matching files from multiple origins since their schema and layout may not be compatible or properly documented. Most surveyed solutions overlook this problem, especially for numeric, uncertain data, as is typical in fields like astronomy. The main objective of our research is to assist data scientists during the exploration of unprocessed, numerical, raw data distributed across multiple files based solely on its intrinsic distribution. In this thesis, we first introduce the concept of Equally-Distributed Dependencies, which provides the foundations to match this kind of dataset. We propose PresQ, a novel algorithm that finds quasi-cliques on hypergraphs based on their expected statistical properties. The probabilistic approach of PresQ can be successfully exploited to mine EDD between diverse datasets when the underlying populations can be assumed to be the same. Finally, we propose a two-sample statistical test based on Self-Organizing Maps (SOM). This method can outperform, in terms of power, other classifier-based two- sample tests, being in some cases comparable to kernel-based methods, with the advantage of being interpretable. Both PresQ and the SOM-based statistical test can provide insights that drive serendipitous discoveries

    λŒ€μš©λŸ‰ 데이터 탐색을 μœ„ν•œ 점진적 μ‹œκ°ν™” μ‹œμŠ€ν…œ 섀계

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 컴퓨터곡학뢀,2020. 2. μ„œμ§„μš±.Understanding data through interactive visualization, also known as visual analytics, is a common and necessary practice in modern data science. However, as data sizes have increased at unprecedented rates, the computation latency of visualization systems becomes a significant hurdle to visual analytics. The goal of this dissertation is to design a series of systems for progressive visual analytics (PVA)β€”a visual analytics paradigm that can provide intermediate results during computation and allow visual exploration of these resultsβ€”to address the scalability hurdle. To support the interactive exploration of data with billions of records, we first introduce SwiftTuna, an interactive visualization system with scalable visualization and computation components. Our performance benchmark demonstrates that it can handle data with four billion records, giving responsive feedback every few seconds without precomputation. Second, we present PANENE, a progressive algorithm for the Approximate k-Nearest Neighbor (AKNN) problem. PANENE brings useful machine learning methods into visual analytics, which has been challenging due to their long initial latency resulting from AKNN computation. In particular, we accelerate t-Distributed Stochastic Neighbor Embedding (t-SNE), a popular non-linear dimensionality reduction technique, which enables the responsive visualization of data with a few hundred columns. Each of these two contributions aims to address the scalability issues stemming from a large number of rows or columns in data, respectively. Third, from the users' perspective, we focus on improving the trustworthiness of intermediate knowledge gained from uncertain results in PVA. We propose a novel PVA concept, Progressive Visual Analytics with Safeguards, and introduce PVA-Guards, safeguards people can leave on uncertain intermediate knowledge that needs to be verified. We also present a proof-of-concept system, ProReveal, designed and developed to integrate seven safeguards into progressive data exploration. Our user study demonstrates that people not only successfully created PVA-Guards on ProReveal but also voluntarily used PVA-Guards to manage the uncertainty of their knowledge. Finally, summarizing the three studies, we discuss design challenges for progressive systems as well as future research agendas for PVA.ν˜„λŒ€ 데이터 μ‚¬μ΄μ–ΈμŠ€μ—μ„œ μΈν„°λž™ν‹°λΈŒν•œ μ‹œκ°ν™”λ₯Ό 톡해 데이터λ₯Ό μ΄ν•΄ν•˜λŠ” 것은 ν•„μˆ˜μ μΈ 뢄석 방법 쀑 ν•˜λ‚˜μ΄λ‹€. κ·ΈλŸ¬λ‚˜, 졜근 λ°μ΄ν„°μ˜ 크기가 폭발적으둜 μ¦κ°€ν•˜λ©΄μ„œ 데이터 크기둜 인해 λ°œμƒν•˜λŠ” 지연 μ‹œκ°„μ΄ μΈν„°λž™ν‹°λΈŒν•œ μ‹œκ°μ  뢄석에 큰 걸림돌이 λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ΄λŸ¬ν•œ ν™•μž₯μ„± 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄ 점진적 μ‹œκ°μ  뢄석(Progressive Visual Analytics)을 μ§€μ›ν•˜λŠ” 일련의 μ‹œμŠ€ν…œμ„ λ””μžμΈν•˜κ³  κ°œλ°œν•œλ‹€. μ΄λŸ¬ν•œ 점진적 μ‹œκ°μ  뢄석 μ‹œμŠ€ν…œμ€ 데이터 μ²˜λ¦¬κ°€ μ™„μ „νžˆ λλ‚˜μ§€ μ•Šλ”λΌλ„ 쀑간 뢄석 κ²°κ³Όλ₯Ό μ‚¬μš©μžμ—κ²Œ μ œκ³΅ν•¨μœΌλ‘œμ¨ λ°μ΄ν„°μ˜ 크기둜 인해 λ°œμƒν•˜λŠ” 지연 μ‹œκ°„ 문제λ₯Ό μ™„ν™”ν•  수 μžˆλ‹€. 첫째둜, μˆ˜μ‹­μ–΅ 건의 행을 κ°€μ§€λŠ” 데이터λ₯Ό μ‹œκ°μ μœΌλ‘œ 탐색할 수 μžˆλŠ” SwiftTuna μ‹œμŠ€ν…œμ„ μ œμ•ˆν•œλ‹€. 데이터 처리 및 μ‹œκ°μ  ν‘œν˜„μ˜ ν™•μž₯성을 λͺ©ν‘œλ‘œ 개발된 이 μ‹œμŠ€ν…œμ€, μ•½ 40μ–΅ 건의 행을 가진 데이터에 λŒ€ν•œ μ‹œκ°ν™”λ₯Ό μ „μ²˜λ¦¬ 없이 수 μ΄ˆλ§ˆλ‹€ μ—…λ°μ΄νŠΈν•  수 μžˆλŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ‘˜μ§Έλ‘œ, 근사적 k-μ΅œκ·Όμ ‘μ (Approximate k-Nearest Neighbor) 문제λ₯Ό μ μ§„μ μœΌλ‘œ κ³„μ‚°ν•˜λŠ” PANENE μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•œλ‹€. 근사적 k-μ΅œκ·Όμ ‘μ  λ¬Έμ œλŠ” μ—¬λŸ¬ 기계 ν•™μŠ΅ κΈ°λ²•μ—μ„œ μ“°μž„μ—λ„ λΆˆκ΅¬ν•˜κ³  초기 계산 μ‹œκ°„μ΄ κΈΈμ–΄μ„œ μΈν„°λž™ν‹°λΈŒν•œ μ‹œμŠ€ν…œμ— μ μš©ν•˜κΈ° νž˜λ“  ν•œκ³„κ°€ μžˆμ—ˆλ‹€. PANENE μ•Œκ³ λ¦¬μ¦˜μ€ μ΄λŸ¬ν•œ κΈ΄ 초기 계산 μ‹œκ°„μ„ 획기적으둜 κ°œμ„ ν•˜μ—¬ λ‹€μ–‘ν•œ 기계 ν•™μŠ΅ 기법을 μ‹œκ°μ  뢄석에 ν™œμš©ν•  수 μžˆλ„λ‘ ν•œλ‹€. 특히, μœ μš©ν•œ λΉ„μ„ ν˜•μ  차원 κ°μ†Œ 기법인 t-뢄포 ν™•λ₯ μ  μž„λ² λ”©(t-Distributed Stochastic Neighbor Embedding)을 κ°€μ†ν•˜μ—¬ 수백 개의 차원을 κ°€μ§€λŠ” 데이터λ₯Ό λΉ λ₯Έ μ‹œκ°„ 내에 μ‚¬μ˜ν•  수 μžˆλ‹€. μœ„μ˜ 두 μ‹œμŠ€ν…œκ³Ό μ•Œκ³ λ¦¬μ¦˜μ΄ λ°μ΄ν„°μ˜ ν–‰ λ˜λŠ” μ—΄μ˜ 개수둜 μΈν•œ ν™•μž₯μ„± 문제λ₯Ό ν•΄κ²°ν•˜κ³ μž ν–ˆλ‹€λ©΄, μ„Έ 번째 μ‹œμŠ€ν…œμ—μ„œλŠ” 점진적 μ‹œκ°μ  λΆ„μ„μ˜ 신뒰도 문제λ₯Ό κ°œμ„ ν•˜κ³ μž ν•œλ‹€. 점진적 μ‹œκ°μ  λΆ„μ„μ—μ„œ μ‚¬μš©μžμ—κ²Œ μ£Όμ–΄μ§€λŠ” 쀑간 계산 κ²°κ³ΌλŠ” μ΅œμ’… 결과의 κ·Όμ‚¬μΉ˜μ΄λ―€λ‘œ λΆˆν™•μ‹€μ„±μ΄ μ‘΄μž¬ν•œλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ„Έμ΄ν”„κ°€λ“œλ₯Ό μ΄μš©ν•œ 점진적 μ‹œκ°μ  뢄석(Progressive Visual Analytics with Safeguards)μ΄λΌλŠ” μƒˆλ‘œμš΄ κ°œλ…μ„ μ œμ•ˆν•œλ‹€. 이 κ°œλ…μ€ μ‚¬μš©μžκ°€ 점진적 νƒμƒ‰μ—μ„œ λ§ˆμ£Όν•˜λŠ” λΆˆν™•μ‹€ν•œ 쀑간 지식에 μ„Έμ΄ν”„κ°€λ“œλ₯Ό 남길 수 μžˆλ„λ‘ ν•˜μ—¬ νƒμƒ‰μ—μ„œ 얻은 μ§€μ‹μ˜ 정확도λ₯Ό μΆ”ν›„ 검증할 수 μžˆλ„λ‘ ν•œλ‹€. λ˜ν•œ, μ΄λŸ¬ν•œ κ°œλ…μ„ μ‹€μ œλ‘œ κ΅¬ν˜„ν•˜μ—¬ νƒ‘μž¬ν•œ ProReveal μ‹œμŠ€ν…œμ„ μ†Œκ°œν•œλ‹€. ProRevealλ₯Ό μ΄μš©ν•œ μ‚¬μš©μž μ‹€ν—˜μ—μ„œ μ‚¬μš©μžλ“€μ€ μ„Έμ΄ν”„κ°€λ“œλ₯Ό μ„±κ³΅μ μœΌλ‘œ λ§Œλ“€ 수 μžˆμ—ˆμ„ 뿐만 μ•„λ‹ˆλΌ, 쀑간 μ§€μ‹μ˜ λΆˆν™•μ‹€μ„±μ„ 닀루기 μœ„ν•΄ μ„Έμ΄ν”„κ°€λ“œλ₯Ό 자발적으둜 μ΄μš©ν•œλ‹€λŠ” 것을 μ•Œ 수 μžˆμ—ˆλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μœ„ μ„Έ 가지 μ—°κ΅¬μ˜ κ²°κ³Όλ₯Ό μ’…ν•©ν•˜μ—¬ 점진적 μ‹œκ°μ  뢄석 μ‹œμŠ€ν…œμ„ κ΅¬ν˜„ν•  λ•Œμ˜ λ””μžμΈμ  λ‚œμ œμ™€ ν–₯ν›„ 연ꡬ λ°©ν–₯을 λͺ¨μƒ‰ν•œλ‹€.CHAPTER1. Introduction 2 1.1 Background and Motivation 2 1.2 Thesis Statement and Research Questions 5 1.3 Thesis Contributions 5 1.3.1 Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 6 1.3.2 ProgressiveComputation of Approximate k-Nearest Neighbors and Responsive t-SNE 7 1.3.3 Progressive Visual Analytics with Safeguards 8 1.4 Structure of Dissertation 9 CHAPTER2. Related Work 11 2.1 Progressive Visual Analytics 11 2.1.1 Definitions 11 2.1.2 System Latency and Human Factors 13 2.1.3 Users, Tasks, and Models 15 2.1.4 Techniques, Algorithms, and Systems. 17 2.1.5 Uncertainty Visualization 19 2.2 Approaches for Scalable Visualization Systems 20 2.3 The k-Nearest Neighbor (KNN) Problem 22 2.4 t-Distributed Stochastic Neighbor Embedding 26 CHAPTER3. SwiTuna: Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data 28 3.1 The SwiTuna Design 31 3.1.1 Design Considerations 32 3.1.2 System Overview 33 3.1.3 Scalable Visualization Components 36 3.1.4 Visualization Cards 40 3.1.5 User Interface and Interaction 42 3.2 Responsive Querying 44 3.2.1 Querying Pipeline 44 3.2.2 Prompt Responses 47 3.2.3 Incremental Processing 47 3.3 Evaluation: Performance Benchmark 49 3.3.1 Study Design 49 3.3.2 Results and Discussion 52 3.4 Implementation 56 3.5 Summary 56 CHAPTER4. PANENE:AProgressive Algorithm for IndexingandQuerying Approximate k-Nearest Neighbors 58 4.1 Approximate k-Nearest Neighbor 61 4.1.1 A Sequential Algorithm 62 4.1.2 An Online Algorithm 63 4.1.3 A Progressive Algorithm 66 4.1.4 Filtered AKNN Search 71 4.2 k-Nearest Neighbor Lookup Table 72 4.3 Benchmark. 78 4.3.1 Online and Progressive k-d Trees 78 4.3.2 k-Nearest Neighbor Lookup Tables 83 4.4 Applications 85 4.4.1 Progressive Regression and Density Estimation 85 4.4.2 Responsive t-SNE 87 4.5 Implementation 92 4.6 Discussion 92 4.7 Summary 93 CHAPTER5. ProReveal: Progressive Visual Analytics with Safeguards 95 5.1 Progressive Visual Analytics with Safeguards 98 5.1.1 Definition 98 5.1.2 Examples 101 5.1.3 Design Considerations 103 5.2 ProReveal 105 5.3 Evaluation 121 5.4 Discussion 127 5.5 Summary 130 CHAPTER6. Discussion 132 6.1 Lessons Learned 132 6.2 Limitations 135 CHAPTER7. Conclusion 137 7.1 Thesis Contributions Revisited 137 7.2 Future Research Agenda 139 7.3 Final Remarks 141 Abstract (Korean) 155 Acknowledgments (Korean) 157Docto

    You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems

    Full text link
    Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns, typically specified using intuitive sketch-based interfaces. Despite decades of past work on VQSs, these efforts have not translated to adoption in practice, possibly because VQSs are largely evaluated in unrealistic lab-based settings. To remedy this gap in adoption, we collaborated with experts from three diverse domains---astronomy, genetics, and material science---via a year-long user-centered design process to develop a VQS that supports their workflow and analytical needs, and evaluate how VQSs can be used in practice. Our study results reveal that ad-hoc sketch-only querying is not as commonly used as prior work suggests, since analysts are often unable to precisely express their patterns of interest. In addition, we characterize three essential sensemaking processes supported by our enhanced VQS. We discover that participants employ all three processes, but in different proportions, depending on the analytical needs in each domain. Our findings suggest that all three sensemaking processes must be integrated in order to make future VQSs useful for a wide range of analytical inquiries.Comment: Accepted for presentation at IEEE VAST 2019, to be held October 20-25 in Vancouver, Canada. Paper will also be published in a special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG) IEEE VIS (InfoVis/VAST/SciVis) 2019 ACM 2012 CCS - Human-centered computing, Visualization, Visualization design and evaluation method

    Hillview:A trillion-cell spreadsheet for big data

    Get PDF
    Hillview is a distributed spreadsheet for browsing very large datasets that cannot be handled by a single machine. As a spreadsheet, Hillview provides a high degree of interactivity that permits data analysts to explore information quickly along many dimensions while switching visualizations on a whim. To provide the required responsiveness, Hillview introduces visualization sketches, or vizketches, as a simple idea to produce compact data visualizations. Vizketches combine algorithmic techniques for data summarization with computer graphics principles for efficient rendering. While simple, vizketches are effective at scaling the spreadsheet by parallelizing computation, reducing communication, providing progressive visualizations, and offering precise accuracy guarantees. Using Hillview running on eight servers, we can navigate and visualize datasets of tens of billions of rows and trillions of cells, much beyond the published capabilities of competing systems

    DesignSense: A Visual Analytics Interface for Navigating Generated Design Spaces

    Get PDF
    Generative Design (GD) produces many design alternatives and promises novel and performant solutions to architectural design problems. The success of GD rests on the ability to navigate the generated alternatives in a way that is unhindered by their number and in a manner that reflects design judgment, with its quantitative and qualitative dimensions. I address this challenge by critically analyzing the literature on design space navigation (DSN) tools through a set of iteratively developed lenses. The lenses are informed by domain experts\u27 feedback and behavioural studies on design navigation under choice-overload conditions. The lessons from the analysis shaped DesignSense, which is a DSN tool that relies on visual analytics techniques for selecting, inspecting, clustering and grouping alternatives. Furthermore, I present case studies of navigating realistic GD datasets from architecture and game design. Finally, I conduct a formative focus group evaluation with design professionals that shows the tool\u27s potential and highlights future directions

    MFA-DVR: Direct Volume Rendering of MFA Models

    Full text link
    3D volume rendering is widely used to reveal insightful intrinsic patterns of volumetric datasets across many domains. However, the complex structures and varying scales of volumetric data can make efficiently generating high-quality volume rendering results a challenging task. Multivariate functional approximation (MFA) is a new data model that addresses some of the critical challenges: high-order evaluation of both value and derivative anywhere in the spatial domain, compact representation for large-scale volumetric data, and uniform representation of both structured and unstructured data. In this paper, we present MFA-DVR, the first direct volume rendering pipeline utilizing the MFA model, for both structured and unstructured volumetric datasets. We demonstrate improved rendering quality using MFA-DVR on both synthetic and real datasets through a comparative study. We show that MFA-DVR not only generates more faithful volume rendering than using local filters but also performs faster on high-order interpolations on structured and unstructured datasets. MFA-DVR is implemented in the existing volume rendering pipeline of the Visualization Toolkit (VTK) to be accessible by the scientific visualization community

    Balancing Interactive Data Management of Massive Data with Situational Awareness through Smart Aggregation

    Full text link
    Designing a visualization system capable of processing, managing, and presenting massive data sets while maximizing the user’s situational awareness (SA) is a challenging, but important, research question in visual analytics. Traditional data management and interactive retrieval approaches have often focused on solving the data overload problem at the expense of the user’s SA. This paper discusses various data management strategies and the strengths and limitations of each approach in providing the user with SA. A new data management strategy, coined Smart Aggregation, is presented as a powerful approach to overcome the challenges of both massive data sets and maintaining SA. By combining automatic data aggregation with user-defined controls on what, how, and when data should be aggregated, we present a visualization system that can handle massive amounts of data while affording the user with the best possible SA. This approach ensures that a system is always usable in terms of both system resources and human perceptual resources. We have implemented our Smart Aggregation approach in a visual analytics system called VIAssist (Visual Assistant for Information Assurance Analysis) to facilitate exploration, discovery, and SA in th

    Efficient Point Clustering for Visualization

    Get PDF
    The visualization of large spatial point data sets constitutes a problem with respect to runtime and quality. A visualization of raw data often leads to occlusion and clutter and thus a loss of information. Furthermore, particularly mobile devices have problems in displaying millions of data items. Often, thinning via sampling is not the optimal choice because users want to see distributional patterns, cardinalities and outliers. In particular for visual analytics, an aggregation of this type of data is very valuable for providing an interactive user experience. This thesis defines the problem of visual point clustering that leads to proportional circle maps. It furthermore introduces a set of quality measures that assess different aspects of resulting circle representations. The Circle Merging Quadtree constitutes a novel and efficient method to produce visual point clusterings via aggregation. It is able to outperform comparable methods in terms of runtime and also by evaluating it with the aforementioned quality measures. Moreover, the introduction of a preprocessing step leads to further substantial performance improvements and a guaranteed stability of the Circle Merging Quadtree. This thesis furthermore addresses the incorporation of miscellaneous attributes into the aggregation. It discusses means to provide statistical values for numerical and textual attributes that are suitable for side-views such as plots and data tables. The incorporation of multiple data sets or data sets that contain class attributes poses another problem for aggregation and visualization. This thesis provides methods for extending the Circle Merging Quadtree to output pie chart maps or maps that contain circle packings. For the latter variant, this thesis provides results of a user study that investigates the methods and the introduced quality criteria. In the context of providing methods for interactive data visualization, this thesis finally presents the VAT System, where VAT stands for visualization, analysis and transformation. This system constitutes an exploratory geographical information system that implements principles of visual analytics for working with spatio-temporal data. This thesis details on the user interface concept for facilitating exploratory analysis and provides the results of two user studies that assess the approach
    • …
    corecore