336 research outputs found

    An end-user perspective on smart home energy systems in the PowerMatching City demonstration project

    Get PDF
    In discussions on smart grids, it is often stated that residential end-users will play a more active role in the management of the electric power system. Experience in practice on how to empower end-users for such a role is however limited. This paper presents a field study in the first phase of the PowerMatching City project in which twenty-two households were equipped with demand-response-enabled heating systems and white goods. Although end-users were satisfied with the degree of living comfort afforded by the smart energy system, the user interface did not provide sufficient control and energy feedback to support an active contribution to the balancing of supply and demand. The full potential of demand response was thus not realized. The second phase of the project builds on these findings by design, implementation and evaluation of an improved user interface in combination with two demand response propositions

    European Energy Collaboration: Modern Smart Specialization Strategies

    Get PDF
    Враховуючи важливість енергетичного співробітництва в Європі, можливості забезпечити розвиток інфраструктури та встановити необхідні взаємозв'язки між операторами енергоресурсів, керувати потоками енергії та комунікацією між агентами загальноєвропейського енергетичного ринку, застосовувати інноваційні технології для досягнення переваг в розумній спеціалізації у роботі виділено відповідні стратегії. Існуючі енергетичні системи недостатньо оснащені для задоволення найновіших потреб користувачів за такими параметрами, як енергоефективність, надійність, економічність, відповідальність за довкілля. Враховуючи ці параметри, можна знайти майбутній вектор спеціалізації країн в енергетичній сфері. Впровадження розумних енергетичних мереж є необхідним для підвищення енергоефективності, стимулювання економічного розвитку та зростання. У зв'язку з цим формування енергетичної політики Європейського Союзу спрямоване на підвищення безпеки енергопостачання та покращення використання відновлюваної енергії за допомогою різних стимулюючих заходів, передбачених стратегіями та директивами держав-членів ЄС. На сьогодні розвинені країни трансформують свої національні стратегії з розширення відновлюваних джерел енергії у споживанні енергії у всіх секторах економіки. Енергетична політика разом із політикою енергетичної безпеки формується з урахуванням нових потреб розвитку енергетичної інфраструктури. Не всі європейські країни мають достатні запаси традиційних джерел енергії, тому існує необхідність імпорту ресурсів. З огляду на суперечки, що виникають між країнами щодо транспортування енергії, економічного та політичного втручання, європейські країни шукають стійкі джерела енергії для диверсифікації енергопостачання. Таким чином, енергетична безпека досягається за рахунок розширення споживання відновлюваної енергії, виробленої з внутрішніх або зовнішніх джерел енергії. Саме тому пріоритетним завданням є впровадження розумних технологій в енергетичному секторі, належне співробітництво та співпраця для стратегічної перебудови енергетичного ринку. У цьому напрямку все більше уваги приділяється розвитку розумних мереж як основи для майбутнього розвитку енергетичного сектору. Однак слід зазначити, що впровадження технологій інтелектуальних мереж є досить складним процесом, що вимагає глибоких досліджень та аналізу.Учитывая важность энергетического сотрудничества в Европе, возможности для обеспечения развития инфраструктуры и установления необходимых взаимосвязей между операторами энергоресурсов, для управления потоками энергии и коммуникации между участниками общеевропейского энергетического рынка, для применения инновационных технологий для достижения выгод были определены стратегии умной специализации. Существующие энергетические системы недостаточно оснащены для удовлетворения новейших потребностей пользователей по таким параметрам, как энергоэффективность, надежность, экономичность, ответственность за окружающую среду. С учетом этих параметров можно определить будущий вектор специализации стран в сфере энергетики. Развертывание интеллектуальных энергосетей необходимо для повышения энергоэффективности и стимулирования экономического развития. В связи с этим формирование энергетической политики Европейского Союза направлено на повышение безопасности энергоснабжения и улучшение использования возобновляемых источников энергии с помощью различных мер стимулирования, предусмотренных стратегиями и директивами государств-членов ЕС. В настоящее время развитые страны трансформируют свои национальные стратегии в сторону расширения использования возобновляемых источников энергии и потреблении возобновляемой энергии во всех секторах экономики. Энергетическая политика вместе с политикой энергетической безопасности формируется с учетом возникающих потребностей развития энергетической инфраструктуры. Не все европейские страны обладают достаточными запасами традиционных источников энергии, поэтому существует необходимость в импорте ресурсов. Принимая во внимание споры, возникающие между странами по поводу транспортировки энергии, экономического и политического вмешательства, европейские страны ищут устойчивые источники энергии для диверсификации поставок энергии. Таким образом, энергетическая безопасность достигается за счет увеличения потребления возобновляемой энергии, вырабатываемой из внутренних или внешних источников. Вот почему приоритетной задачей является внедрение интеллектуальных технологий в энергетическом секторе, надлежащее сотрудничество и взаимодействие для стратегической реструктуризации энергетического рынка. В этом направлении все больше внимания уделяется развитию интеллектуальных сетей как основы будущего развития энергетического сектора. Однако следует отметить, что внедрение технологий умных сетей - довольно сложный процесс, требующий глубоких исследований и анализа.Given the importance of energy cooperation and collaboration in Europe, possibilities to provide the infrastructure development and to establish the necessary interconnections between energy resource operators, to manage energy flows and communication among Pan-European energy market agents, to apply innovative technologies to achieve the benefits in smart specialization strategies are highlighted. The existing energy systems are insufficiently equipped to meet the users’ newest needs by such parameters as energy efficiency, reliability, cost-effectiveness, responsibility for the environment. Taking these parameters into account, one can find the future specialization vector of countries in the energy sphere. The deployment of smart energy grids is indispensable for improving energy efficiency, stimulating economic development and growth. In this regard, the formation of the European Union's energy policy is aimed at increasing security of energy supply and improving the renewable energy use through various incentive measures provided by the strategies and directives of EU Member States. Nowadays, developed countries are transforming their national strategies to expand renewable energy sources in energy consumption across all sectors of the economy. Energy policies, together with energy security policies, are formed to take into account the emerging needs of energy infrastructure development. Not all European countries have sufficient reserves of conventional energy sources, so there is a need to import resources. Given the controversy that arises between countries over energy transportation, economic and political interference, European countries are looking for sustainable energy sources to diversify their energy supply. Thus, energy security is achieved by expanding the consumption of renewable energy generated from internal or external energy sources. That is why the priority task is to introduce and to implement smart technologies in the energy sector, proper cooperation and collaboration for a strategic restructuring of the energy market. In this direction, more and more attention is paid to the development of smart grids as a basis for the future development of the energy sector. However, it should be noted that smart grid technologies implementation is a rather complex process that requires deep studies and analysis

    Smart Grid Projects Outlook 2014

    Get PDF
    Smart grid projects are playing a key role in shedding light on how to move forward in this challenging transition. In 2011, therefore, the JRC launched the first comprehensive inventory of smart grid projects in Europe to collect lessons learned and assess current developments. The participation of project coordinators and the reception of the report by the smart grid community were extremely positive. It was therefore decided that the project inventory would be carried out on a regular basis so as to constantly update the picture of smart grid developments. This study is the 2013-2014 update of the inventory started out in 2011. The JRC’s 2013-14 Smart Grid database contains 459 smart grid R&D and D&D projects from all 28 European Union countries. Switzerland and Norway were studied together with the EU28 countries since they are present in a substantial number of projects with EU countries. Other 17 non EU countries are represented in the inventory by their participating organisations. The total investment of the smart grid projects amounts to €3.15 billion.JRC.F.3-Energy Security, Systems and Marke

    The Role of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance Enhancement

    Get PDF
    Low carbon technologies are necessary to address global warming issues through electricity decabonisation, but their large-scale integration challenges the stability and security of electricity supply. Energy storage can support this transition by bringing flexibility to the grid but since it represents high capital investments, the right choices must be made in terms of the technology and the location point in the network. Most of the potential for storage is achieved when connected further from the load, and Battery Energy Storage Systems (BESS) are a strong candidate for behind-the-meter integration. This work reviews and evaluates the state-of-the-art development of BESS, analysing the benefits and barriers to a wider range of applications in the domestic sector. Existing modelling tools that are key for a better assessment of the impacts of BESS to the grid are also reviewed. It is shown that the technology exists and has potential for including Electric Vehicle battery reuse, however it is still mostly applied to optimise domestic photovoltaic electricity utilisation. The barriers to a wider integration are financial, economic, technical, as well as market and regulation. Increased field trials and robust numerical modelling should be the next step to gain investment confidence and allow BESS to reach their potential

    Germany’s way from conventional power grids towards smart grids

    Get PDF

    Optimal energy management of a campus microgrid considering financial and economic analysis with demand response strategies

    Get PDF
    An energy management system (EMS) was proposed for a campus microgrid (µG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a strategy proposal for the EMS structure for a campus microgrid to reduce the operational costs while increasing the self-consumption from green DGs. For this reason, a real-time-based institutional campus was investigated here, which aimed to get all of its power from the utility grid. In the proposed scenario, solar panels and wind turbines were considered as non-dispatchable DGs, whereas a diesel generator was considered as a dispatchable DG, with the inclusion of an energy storage system (ESS) to deal with solar radiation disruptions and high utility grid running expenses. The resulting linear mathematical problem was validated and plotted in MATLAB with mixed-integer linear programming (MILP). The simulation findings demonstrated that the proposed model of the EMS reduced the grid electricity costs by 38% for the campus microgrid. The environmental effects, economic effects, and the financial comparison of installed capacity of the PV system were also investigated here, and it was discovered that installing 1000 kW and 2000 kW rooftop solar reduced the GHG generation by up to 365.34 kg CO2/day and 700.68 kg CO2/day, respectively. The significant economic and environmental advantages based on the current scenario encourage campus owners to invest in DGs and to implement the installation of energy storage systems with advanced concepts

    Functional Analysis of the Microgrid Concept Applied to Case Studies of the Sundom Smart Grid

    Get PDF
    The operation of microgrids is a complex task because it involves several stakeholders and controlling a large number of different active and intelligent resources or devices. Management functions, such as frequency control or islanding, are defined in the microgrid concept, but depending on the application, some functions may not be needed. In order to analyze the required functions for network operation and visualize the interactions between the actors operating a particular microgrid, a comprehensive use case analysis is needed. This paper presents the use case modelling method applied for microgrid management from an abstract or concept level to a more practical level. By utilizing case studies, the potential entities can be detected where the development or improvement of practical solutions is necessary. The use case analysis has been conducted from top-down until test use cases by real-time simulation models. Test use cases are applied to a real distribution network model, Sundom Smart Grid, with measurement data and newly developed controllers.. The functional analysis provides valuable results when studying several microgrid functions operating in parallel and affecting each other. For example, as shown in this paper, ancillary services provided by an active customer may mean that both the active power and reactive power from customer premises are controlled at the same time by different stakeholders.© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Greening IT : How greener it can form a solid base for a low-carbon society

    Get PDF
    272 p.Libro ElectrónicoInformation Technology is responsible for approximately 2% of the world's emission of greenhouse gases. The IT sector itself contributes to these greenhouse gas emissions, through its massive consumption of energy - and therefore continuously exacerbates the problem. At the same time, however, the IT industry can provide the technological solutions we need to optimise resource use, save energy and reduce greenhouse gas emissions. We call this Greening IT. This book looks into the great potential of greening society with IT - i.e. the potential of IT in transforming our societies into Low-Carbon societies. The book is the result of an internationally collaborative effort by a number of opinion leaders in the field of Greening IT. Tomado de http://www.amazon.com/gp/product/8791936020The Greening of IT is a symptom of a much larger challenge for humankind - transitioning from economic childhood into maturity. Despite the emergence of large regional alliances such as the EC, humankind remains incredibly fragmented; and yet the need for global climate and energy policies is pressing. IT offers tantalizing technical solutions to our emissions and growth dilemma: it can grow greener and help with the greening of other industries. This book explores this potential.AcknowledgementsDisclosure1 Prologue2 Our Tools Will Not Save Us This Time - by Laurent Liscia3 Climate Change and the Low Carbon Society - by Irene N. Sobotta4 Why Green IT Is Hard - An Economic Perspective - by Rien Dijkstra5 Cloud Computing - by Adrian Sobotta6 Thin Client Computing - by Sean Whetstone7 Smart Grid - by Adrian Sobotta8 How IT Contributes to the Greening of the Grid - by Dr. GeorgeW. Arnold9 The Green IT Industry Ecosystem - by Ariane Rüdiger10 Out of The Box Ways IT Can Help to Preserve Nature and Reduce CO2 - by Flavio Souza11 From KPIs to the Business Case - Return on Investment on Green IT? - by Dominique C. Brack12 Computing Energy Efficiency - An Introduction - by Bianca Wirth13 A Future View: Biomimicry + Technology - by Bianca Wirth14 Greening Supply Chains - The Role of Information Technologies - by Hans Moonen15 EpilogueReferencesInde
    corecore