557,764 research outputs found

    Code2Que: A Tool for Improving Question Titles from Mined Code Snippets in Stack Overflow

    Full text link
    Stack Overflow is one of the most popular technical Q&A sites used by software developers. Seeking help from Stack Overflow has become an essential part of software developers' daily work for solving programming-related questions. Although the Stack Overflow community has provided quality assurance guidelines to help users write better questions, we observed that a significant number of questions submitted to Stack Overflow are of low quality. In this paper, we introduce a new web-based tool, Code2Que, which can help developers in writing higher quality questions for a given code snippet. Code2Que consists of two main stages: offline learning and online recommendation. In the offline learning phase, we first collect a set of good quality pairs as training samples. We then train our model on these training samples via a deep sequence-to-sequence approach, enhanced with an attention mechanism, a copy mechanism and a coverage mechanism. In the online recommendation phase, for a given code snippet, we use the offline trained model to generate question titles to assist less experienced developers in writing questions more effectively. At the same time, we embed the given code snippet into a vector and retrieve the related questions with similar problematic code snippets.Comment: arXiv admin note: text overlap with arXiv:2005.1015

    Lower Bounds for Two-Sample Structural Change Detection in Ising and Gaussian Models

    Full text link
    The change detection problem is to determine if the Markov network structures of two Markov random fields differ from one another given two sets of samples drawn from the respective underlying distributions. We study the trade-off between the sample sizes and the reliability of change detection, measured as a minimax risk, for the important cases of the Ising models and the Gaussian Markov random fields restricted to the models which have network structures with pp nodes and degree at most dd, and obtain information-theoretic lower bounds for reliable change detection over these models. We show that for the Ising model, Ω(d2(log⁥d)2log⁥p)\Omega\left(\frac{d^2}{(\log d)^2}\log p\right) samples are required from each dataset to detect even the sparsest possible changes, and that for the Gaussian, Ω(γ−2log⁥(p))\Omega\left( \gamma^{-2} \log(p)\right) samples are required from each dataset to detect change, where Îł\gamma is the smallest ratio of off-diagonal to diagonal terms in the precision matrices of the distributions. These bounds are compared to the corresponding results in structure learning, and closely match them under mild conditions on the model parameters. Thus, our change detection bounds inherit partial tightness from the structure learning schemes in previous literature, demonstrating that in certain parameter regimes, the naive structure learning based approach to change detection is minimax optimal up to constant factors.Comment: Presented at the 55th Annual Allerton Conference on Communication, Control, and Computing, Oct. 201

    Gradient-based Reinforcement Planning in Policy-Search Methods

    Full text link
    We introduce a learning method called ``gradient-based reinforcement planning'' (GREP). Unlike traditional DP methods that improve their policy backwards in time, GREP is a gradient-based method that plans ahead and improves its policy before it actually acts in the environment. We derive formulas for the exact policy gradient that maximizes the expected future reward and confirm our ideas with numerical experiments.Comment: This is an extended version of the paper presented at the EWRL 2001 in Utrecht (The Netherlands
    • 

    corecore