12,525 research outputs found

    Intersubject Regularity in the Intrinsic Shape of Human V1

    Full text link
    Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 μm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results

    Binaural Cues for Distance and Direction of Nearby Sound Sources

    Full text link
    To a first-order approximation, binaural localization cues are ambiguous: a number of source locations give rise to nearly the same interaural differences. For sources more than a meter from the listener, binaural localization cues are approximately equal for any source on a cone centered on the interaural axis (i.e., the well-known "cones of confusion"). The current paper analyzes simple geometric approximations of a listener's head to gain insight into localization performance for sources near the listener. In particular, if the head is treated as a rigid, perfect sphere, interaural intensity differences (IIDs) can be broken down into two main components. One component is constant along the cone of confusion (and thus co varies with the interaural time difference, or ITD). The other component is roughly constant for a sphere centered on the interaural axis and depends only on the relative pathlengths from the source to the two ears. This second factor is only large enough to be perceptible when sources are within one or two meters of the listener. These results are not dramatically different if one assumes that the ears are separated by 160 degrees along the surface of the sphere (rather than diametrically opposite one another). Thus, for sources within a meter of the listener, binaural information should allow listeners to locate sources within a volume around a circle centered on the interaural axis, on a "doughnut of confusion." The volume of the doughnut of confusion increases dramatically with angle between source and the interaural axis, degenerating to the entire median plane in the limit.Air Force Office of Scientific Research (F49620-98-1-0108

    Holographic Entanglement Entropy

    Full text link
    We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application of holographic ideas to computation of entanglement entropy in strongly coupled field theories, and discussion of tensor networks and holography, which we have chosen to exclude from the current manuscript.Comment: 154 pages. many figures. preliminary version of book chapters. comments welcome. v2: typos fixed and references adde

    Noise reduction tests of large-scale-model externally blown flap using trailing-edge blowing and partial flap slot covering

    Get PDF
    Noise data were obtained with a large-scale cold-flow model of a two-flap, under-the-wing, externally blown flap proposed for use on future STOL aircraft. The noise suppression effectiveness of locating a slot conical nozzle at the trailing edge of the second flap and of applying partial covers to the slots between the wing and flaps was evaluated. Overall-sound-pressure-level reductions of 5 db occurred below the wing in the flyover plane. Existing models of several noise sources were applied to the test results. The resulting analytical relation compares favorably with the test data. The noise source mechanisms were analyzed and are discussed

    Two-component jet simulations: II. Combining analytical disk and stellar MHD outflow solutions

    Get PDF
    Theoretical arguments along with observational data of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. Each component's contribution depends on the intrinsic physical properties of the YSO-disk system and its evolutionary stage. The main goal of this paper is to understand some of the basic features of the evolution, interaction and co-existence of the two jet components over a parameter space and when time variability is enforced. Having studied separately the numerical evolution of each type of the complementary disk and stellar analytical wind solutions in Paper I of this series, we proceed here to mix together the two models inside the computational box. The evolution in time is performed with the PLUTO code, investigating the dynamics of the two-component jets, the modifications each solution undergoes and the potential steady state reached.Comment: accepted for publication in A&

    Recovering facial shape using a statistical model of surface normal direction

    Get PDF
    In this paper, we show how a statistical model of facial shape can be embedded within a shape-from-shading algorithm. We describe how facial shape can be captured using a statistical model of variations in surface normal direction. To construct this model, we make use of the azimuthal equidistant projection to map the distribution of surface normals from the polar representation on a unit sphere to Cartesian points on a local tangent plane. The distribution of surface normal directions is captured using the covariance matrix for the projected point positions. The eigenvectors of the covariance matrix define the modes of shape-variation in the fields of transformed surface normals. We show how this model can be trained using surface normal data acquired from range images and how to fit the model to intensity images of faces using constraints on the surface normal direction provided by Lambert's law. We demonstrate that the combination of a global statistical constraint and local irradiance constraint yields an efficient and accurate approach to facial shape recovery and is capable of recovering fine local surface details. We assess the accuracy of the technique on a variety of images with ground truth and real-world images
    corecore