1,533 research outputs found

    Random numbers from the tails of probability distributions using the transformation method

    Get PDF
    The speed of many one-line transformation methods for the production of, for example, Levy alpha-stable random numbers, which generalize Gaussian ones, and Mittag-Leffler random numbers, which generalize exponential ones, is very high and satisfactory for most purposes. However, for the class of decreasing probability densities fast rejection implementations like the Ziggurat by Marsaglia and Tsang promise a significant speed-up if it is possible to complement them with a method that samples the tails of the infinite support. This requires the fast generation of random numbers greater or smaller than a certain value. We present a method to achieve this, and also to generate random numbers within any arbitrary interval. We demonstrate the method showing the properties of the transform maps of the above mentioned distributions as examples of stable and geometric stable random numbers used for the stochastic solution of the space-time fractional diffusion equation.Comment: 17 pages, 7 figures, submitted to a peer-reviewed journa

    Efficient rare-event simulation for the maximum of heavy-tailed random walks

    Full text link
    Let (Xn:n≄0)(X_n:n\geq 0) be a sequence of i.i.d. r.v.'s with negative mean. Set S0=0S_0=0 and define Sn=X1+...+XnS_n=X_1+... +X_n. We propose an importance sampling algorithm to estimate the tail of M=max⁥{Sn:n≄0}M=\max \{S_n:n\geq 0\} that is strongly efficient for both light and heavy-tailed increment distributions. Moreover, in the case of heavy-tailed increments and under additional technical assumptions, our estimator can be shown to have asymptotically vanishing relative variance in the sense that its coefficient of variation vanishes as the tail parameter increases. A key feature of our algorithm is that it is state-dependent. In the presence of light tails, our procedure leads to Siegmund's (1979) algorithm. The rigorous analysis of efficiency requires new Lyapunov-type inequalities that can be useful in the study of more general importance sampling algorithms.Comment: Published in at http://dx.doi.org/10.1214/07-AAP485 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bootstrapping a conditional moments test for normality after tobit estimation

    Get PDF
    Categorical and limited dependent variable models are routinely estimated via maximum likelihood. It is well-known that the ML estimates of the parameters are inconsistent if the distribution or the skedastic component is misspecified. When conditional moment tests were first developed by Newey (1985) and Tauchen (1985),they appeared to offer a wide range of easy-to-compute specification tests for categorical and limited dependent variable models estimated by maximum likelihood. However, subsequent studies found that using the asymptotic critical values produced severe size distortions. This paper presents simulation evidence that the standard conditional moment test for normality after tobit estimation has essentially no size distortion and reasonable power when the critical values are obtained via a parametric bootstrap. Copyright 2002 by Stata Corporation.conditional moment tests,bootstrap,tobit,normality

    Two adaptive rejection sampling schemes for probability density functions log-convex tails

    Get PDF
    Monte Carlo methods are often necessary for the implementation of optimal Bayesian estimators. A fundamental technique that can be used to generate samples from virtually any target probability distribution is the so-called rejection sampling method, which generates candidate samples from a proposal distribution and then accepts them or not by testing the ratio of the target and proposal densities. The class of adaptive rejection sampling (ARS) algorithms is particularly interesting because they can achieve high acceptance rates. However, the standard ARS method can only be used with log-concave target densities. For this reason, many generalizations have been proposed. In this work, we investigate two different adaptive schemes that can be used to draw exactly from a large family of univariate probability density functions (pdf's), not necessarily log-concave, possibly multimodal and with tails of arbitrary concavity. These techniques are adaptive in the sense that every time a candidate sample is rejected, the acceptance rate is improved. The two proposed algorithms can work properly when the target pdf is multimodal, with first and second derivatives analytically intractable, and when the tails are log-convex in a infinite domain. Therefore, they can be applied in a number of scenarios in which the other generalizations of the standard ARS fail. Two illustrative numerical examples are shown

    On Buffon Machines and Numbers

    Get PDF
    The well-know needle experiment of Buffon can be regarded as an analog (i.e., continuous) device that stochastically "computes" the number 2/pi ~ 0.63661, which is the experiment's probability of success. Generalizing the experiment and simplifying the computational framework, we consider probability distributions, which can be produced perfectly, from a discrete source of unbiased coin flips. We describe and analyse a few simple Buffon machines that generate geometric, Poisson, and logarithmic-series distributions. We provide human-accessible Buffon machines, which require a dozen coin flips or less, on average, and produce experiments whose probabilities of success are expressible in terms of numbers such as, exp(-1), log 2, sqrt(3), cos(1/4), aeta(5). Generally, we develop a collection of constructions based on simple probabilistic mechanisms that enable one to design Buffon experiments involving compositions of exponentials and logarithms, polylogarithms, direct and inverse trigonometric functions, algebraic and hypergeometric functions, as well as functions defined by integrals, such as the Gaussian error function.Comment: Largely revised version with references and figures added. 12 pages. In ACM-SIAM Symposium on Discrete Algorithms (SODA'2011

    From phenomenological modelling of anomalous diffusion through continuous-time random walks and fractional calculus to correlation analysis of complex systems

    Get PDF
    This document contains more than one topic, but they are all connected in ei- ther physical analogy, analytic/numerical resemblance or because one is a building block of another. The topics are anomalous diffusion, modelling of stylised facts based on an empirical random walker diffusion model and null-hypothesis tests in time series data-analysis reusing the same diffusion model. Inbetween these topics are interrupted by an introduction of new methods for fast production of random numbers and matrices of certain types. This interruption constitutes the entire chapter on random numbers that is purely algorithmic and was inspired by the need of fast random numbers of special types. The sequence of chapters is chrono- logically meaningful in the sense that fast random numbers are needed in the first topic dealing with continuous-time random walks (CTRWs) and their connection to fractional diffusion. The contents of the last four chapters were indeed produced in this sequence, but with some temporal overlap. While the fast Monte Carlo solution of the time and space fractional diffusion equation is a nice application that sped-up hugely with our new method we were also interested in CTRWs as a model for certain stylised facts. Without knowing economists [80] reinvented what physicists had subconsciously used for decades already. It is the so called stylised fact for which another word can be empirical truth. A simple example: The diffusion equation gives a probability at a certain time to find a certain diffusive particle in some position or indicates concentration of a dye. It is debatable if probability is physical reality. Most importantly, it does not describe the physical system completely. Instead, the equation describes only a certain expectation value of interest, where it does not matter if it is of grains, prices or people which diffuse away. Reality is coded and “averaged” in the diffusion constant. Interpreting a CTRW as an abstract microscopic particle motion model it can solve the time and space fractional diffusion equation. This type of diffusion equation mimics some types of anomalous diffusion, a name usually given to effects that cannot be explained by classic stochastic models. In particular not by the classic diffusion equation. It was recognised only recently, ca. in the mid 1990s, that the random walk model used here is the abstract particle based counterpart for the macroscopic time- and space-fractional diffusion equation, just like the “classic” random walk with regular jumps ±∆x solves the classic diffusion equation. Both equations can be solved in a Monte Carlo fashion with many realisations of walks. Interpreting the CTRW as a time series model it can serve as a possible null- hypothesis scenario in applications with measurements that behave similarly. It may be necessary to simulate many null-hypothesis realisations of the system to give a (probabilistic) answer to what the “outcome” is under the assumption that the particles, stocks, etc. are not correlated. Another topic is (random) correlation matrices. These are partly built on the previously introduced continuous-time random walks and are important in null- hypothesis testing, data analysis and filtering. The main ob jects encountered in dealing with these matrices are eigenvalues and eigenvectors. The latter are car- ried over to the following topic of mode analysis and application in clustering. The presented properties of correlation matrices of correlated measurements seem to be wasted in contemporary methods of clustering with (dis-)similarity measures from time series. Most applications of spectral clustering ignores information and is not able to distinguish between certain cases. The suggested procedure is sup- posed to identify and separate out clusters by using additional information coded in the eigenvectors. In addition, random matrix theory can also serve to analyse microarray data for the extraction of functional genetic groups and it also suggests an error model. Finally, the last topic on synchronisation analysis of electroen- cephalogram (EEG) data resurrects the eigenvalues and eigenvectors as well as the mode analysis, but this time of matrices made of synchronisation coefficients of neurological activity
    • 

    corecore