398 research outputs found

    Two new weak constraint qualifications and applications

    Get PDF
    We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.Facultad de Ciencias ExactasDepartamento de Matemátic

    Implementing a smooth exact penalty function for equality-constrained nonlinear optimization

    Full text link
    We develop a general equality-constrained nonlinear optimization algorithm based on a smooth penalty function proposed by Fletcher (1970). Although it was historically considered to be computationally prohibitive in practice, we demonstrate that the computational kernels required are no more expensive than other widely accepted methods for nonlinear optimization. The main kernel required to evaluate the penalty function and its derivatives is solving a structured linear system. We show how to solve this system efficiently by storing a single factorization each iteration when the matrices are available explicitly. We further show how to adapt the penalty function to the class of factorization-free algorithms by solving the linear system iteratively. The penalty function therefore has promise when the linear system can be solved efficiently, e.g., for PDE-constrained optimization problems where efficient preconditioners exist. We discuss extensions including handling simple constraints explicitly, regularizing the penalty function, and inexact evaluation of the penalty function and its gradients. We demonstrate the merits of the approach and its various features on some nonlinear programs from a standard test set, and some PDE-constrained optimization problems

    TWO NEW WEAK CONSTRAINT QUALIFICATIONS AND APPLICATIONS

    Get PDF
    We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.RONEX-Optimization (PRONEX-CNPq/FAPERJ) [E-26/171.510/2006-APQ1]Fapesp [2006/53768-0, 2009/09414-7, 2010/19720-5]CNPq [300900/2009-0, 303030/2007-0, 305740/2010-5, 474138/2008-9

    Mathematical Multi-Objective Optimization of the Tactical Allocation of Machining Resources in Functional Workshops

    Get PDF
    In the aerospace industry, efficient management of machining capacity is crucial to meet the required service levels to customers and to maintain control of the tied-up working capital. We introduce new multi-item, multi-level capacitated resource allocation models with a medium--to--long--term planning horizon. The model refers to functional workshops where costly and/or time- and resource-demanding preparations (or qualifications) are required each time a product needs to be (re)allocated to a machining resource. Our goal is to identify possible product routings through the factory which minimize the maximum excess resource loading above a given loading threshold while incurring as low qualification costs as possible and minimizing the inventory.In Paper I, we propose a new bi-objective mixed-integer (linear) optimization model for the Tactical Resource Allocation Problem (TRAP). We highlight some of the mathematical properties of the TRAP which are utilized to enhance the solution process. In Paper II, we address the uncertainty in the coefficients of one of the objective functions considered in the bi-objective TRAP. We propose a new bi-objective robust efficiency concept and highlight its benefits over existing robust efficiency concepts. In Paper III, we extend the TRAP with an inventory of semi-finished as well as finished parts, resulting in a tri-objective mixed-integer (linear) programming model. We create a criterion space partitioning approach that enables solving sub-problems simultaneously. In Paper IV, using our knowledge from our previous work we embarked upon a task to generalize our findings to develop an approach for any discrete tri-objective optimization problem. The focus is on identifying a representative set of non-dominated points with a pre-defined desired coverage gap
    • …
    corecore