5,956 research outputs found

    On the Hardness of Entropy Minimization and Related Problems

    Full text link
    We investigate certain optimization problems for Shannon information measures, namely, minimization of joint and conditional entropies H(X,Y)H(X,Y), H(XY)H(X|Y), H(YX)H(Y|X), and maximization of mutual information I(X;Y)I(X;Y), over convex regions. When restricted to the so-called transportation polytopes (sets of distributions with fixed marginals), very simple proofs of NP-hardness are obtained for these problems because in that case they are all equivalent, and their connection to the well-known \textsc{Subset sum} and \textsc{Partition} problems is revealed. The computational intractability of the more general problems over arbitrary polytopes is then a simple consequence. Further, a simple class of polytopes is shown over which the above problems are not equivalent and their complexity differs sharply, namely, minimization of H(X,Y)H(X,Y) and H(YX)H(Y|X) is trivial, while minimization of H(XY)H(X|Y) and maximization of I(X;Y)I(X;Y) are strongly NP-hard problems. Finally, two new (pseudo)metrics on the space of discrete probability distributions are introduced, based on the so-called variation of information quantity, and NP-hardness of their computation is shown.Comment: IEEE Information Theory Workshop (ITW) 201

    The N-K Problem in Power Grids: New Models, Formulations and Numerical Experiments (extended version)

    Get PDF
    Given a power grid modeled by a network together with equations describing the power flows, power generation and consumption, and the laws of physics, the so-called N-k problem asks whether there exists a set of k or fewer arcs whose removal will cause the system to fail. The case where k is small is of practical interest. We present theoretical and computational results involving a mixed-integer model and a continuous nonlinear model related to this question.Comment: 40 pages 3 figure

    Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation

    Get PDF
    We consider a utility maximization problem for an investment-consumption portfolio when the current utility depends also on the wealth process. Such kind of problems arise, e.g., in portfolio optimization with random horizon or with random trading times. To overcome the difficulties of the problem we use the dual approach. We define a dual problem and treat it by means of dynamic programming, showing that the viscosity solutions of the associated Hamilton-Jacobi-Bellman equation belong to a suitable class of smooth functions. This allows to define a smooth solution of the primal Hamilton-Jacobi-Bellman equation, proving that this solution is indeed unique in a suitable class and coincides with the value function of the primal problem. Some financial applications of the results are provided
    corecore