707 research outputs found

    Moving from Linear to Conic Markets for Electricity

    Get PDF
    We propose a new forward electricity market framework that admits heterogeneous market participants with second-order cone strategy sets, who accurately express the nonlinearities in their costs and constraints through conic bids, and a network operator facing conic operational constraints. In contrast to the prevalent linear-programming-based electricity markets, we highlight how the inclusion of second-order cone constraints enables uncertainty-, asset- and network-awareness of the market, which is key to the successful transition towards an electricity system based on weather-dependent renewable energy sources. We analyze our general market-clearing proposal using conic duality theory to derive efficient spatially-differentiated prices for the multiple commodities, comprising of energy and flexibility services. Under the assumption of perfect competition, we prove the equivalence of the centrally-solved market-clearing optimization problem to a competitive spatial price equilibrium involving a set of rational and self-interested participants and a price setter. Finally, under common assumptions, we prove that moving towards conic markets does not incur the loss of desirable economic properties of markets, namely market efficiency, cost recovery and revenue adequacy. Our numerical studies focus on the specific use case of uncertainty-aware market design and demonstrate that the proposed conic market brings advantages over existing alternatives within the linear programming market framework.Comment: Manuscript with electronic companion; submitted to Operations Researc

    Renewable energy sources offering flexibility through electricity markets

    Get PDF

    Interactive Multicriteria Approach to Facility Location-Allocation Models Under Stochastic Demand

    Get PDF
    Industrial Engineering and Managemen

    Investigation of Game-Theoretic Mechanisms for the Valuation of Energy Resources

    Get PDF
    Electricity systems are facing the pressure to change in response to the effects of new technology, particularly the proliferation of renewable technologies (such as solar PV systems and wind generation) leading to the retirement of traditional generation technologies that provide stabilising inertia. These changes create an imperative to consider potential future market structures to facilitate the participation of distributed energy resources (DERs; such as EVs and batteries) in grid operation. However, this gives rise to general questions surrounding the ethics of market structures and how they could be fairly applied in future electricity systems. Particularly the most basic question "how should electricity be valued and traded" is fundamentally a moral question without any easy answer. We give a survey of philosophical attitudes around such a question, before presenting a series of ways that these intuitions have been cast into mathematics, including: the Vickrey-Clarke-Groves mechanism, Locational Marginal Pricing, the Shapley Value, and Nash bargaining solution concepts. We compared these different methods, and attempted a new synthesis that brought together the best features of each of them; called the 'Generalised Neyman and Kohlberg Value' or the GNK-value for short. The GNK value was developed as a novel bargaining solution concept for many player non-cooperative transferable utility generalised games, and thus it was intrinsically flexible in its application to various aspects of powersystems. We demonstrated the features of the GNK-value against the other mathematical solutions in the context of trading the immediate consumption/generation of power on small sized networks under linear-DC approximation, before extending the computation to larger networks. The GNK value proved to be difficult to compute for large networks but was shown to be approximable for larger networks with a series of sampling techniques and a proxy method. The GNK value was ethically compared to other mechanisms with the unfortunate discovery that it allowed for participants to be left worse-off for participating, violating the ethical notion of 'euvoluntary exchange' and 'individual rationality'; but was offered as an interesting innovation in the space of transferable utility generalised games notwithstanding. For sampling the GNK value, there was a range of new and different techniques developed for stratified random sampling which iteratively minimise newly derived concentration inequalities on the error of the sampling. These techniques were developed to assist in the computation of the GNK value to larger networks, and they were evaluated in the context of sampling synthetic data, and in computation of the Shapley Value of cooperative game theory. These new sampling techniques were demonstrated to be comparable to the more orthodox Neyman sampling method despite not having access to stratum variances

    On the Pricing of Forward Starting Options under Stochastic Volatility

    Get PDF
    We consider the problem of pricing European forward starting options in the presence of stochastic ­volatility. By performing a change of measure using the asset price at the time of strike determination as a numeraire, we derive a closed-form solution based on Heston’s model of stochastic volatility
    • …
    corecore