568 research outputs found

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Natively probabilistic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009.Includes bibliographical references (leaves 129-135).I introduce a new set of natively probabilistic computing abstractions, including probabilistic generalizations of Boolean circuits, backtracking search and pure Lisp. I show how these tools let one compactly specify probabilistic generative models, generalize and parallelize widely used sampling algorithms like rejection sampling and Markov chain Monte Carlo, and solve difficult Bayesian inference problems. I first introduce Church, a probabilistic programming language for describing probabilistic generative processes that induce distributions, which generalizes Lisp, a language for describing deterministic procedures that induce functions. I highlight the ways randomness meshes with the reflectiveness of Lisp to support the representation of structured, uncertain knowledge, including nonparametric Bayesian models from the current literature, programs for decision making under uncertainty, and programs that learn very simple programs from data. I then introduce systematic stochastic search, a recursive algorithm for exact and approximate sampling that generalizes a popular form of backtracking search to the broader setting of stochastic simulation and recovers widely used particle filters as a special case. I use it to solve probabilistic reasoning problems from statistical physics, causal reasoning and stereo vision. Finally, I introduce stochastic digital circuits that model the probability algebra just as traditional Boolean circuits model the Boolean algebra.(cont.) I show how these circuits can be used to build massively parallel, fault-tolerant machines for sampling and allow one to efficiently run Markov chain Monte Carlo methods on models with hundreds of thousands of variables in real time. I emphasize the ways in which these ideas fit together into a coherent software and hardware stack for natively probabilistic computing, organized around distributions and samplers rather than deterministic functions. I argue that by building uncertainty and randomness into the foundations of our programming languages and computing machines, we may arrive at ones that are more powerful, flexible and efficient than deterministic designs, and are in better alignment with the needs of computational science, statistics and artificial intelligence.by Vikash Kumar Mansinghka.Ph.D

    Summary Proceedings of the Workshop on Adaptation and Optimization (Moscow, November 1982)

    Get PDF
    In November 1982, IIASA and the Committee for Systems Analysis of the USSR Academy of Sciences cosponsored a Workshop on Adaptation and Optimization in Moscow. The purpose of the Workshop was to discuss the aspects of optimization and adaptive control concerned with systems that operate under conditions of uncertainty. There is great interest in this area in the countries represented at IIASA because most of the systems studied at IIASA (e.g., economic, technological and environmental systems) are of this type. Control in such systems often has a dual purpose: (i) to identify and refine the system model; (ii) to achieve the ultimate aim of the control process. The implementation of these control procedures is closely connected with the related optimization processes. Problems of optimization under incomplete information may also be approached from the areas of multicriteria optimization, game theory and interactive decision analysis. This volume contains abstracts of the thirty papers presented at the Workshop. They may be roughly classified by subject into the following groups: optimization and estimation of dynamical systems under uncertainty; stochastic optimization, estimation and identification of stochastic processes; applications of adaptive control in ecology and engineering; and decision making and applications in economics and the social sciences

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog
    corecore