558 research outputs found

    Simple and explicit bounds for multi-server queues with 1/(1ρ)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11ρ\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let μA\mu_A (respectively μS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AμA)r],E[(SμS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11ρ\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11ρ\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11ρ\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1ρ)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations

    RESTLESS BANDIT MARGINAL PRODUCTIVITY INDICES II: MULTIPROJECT CASE AND SCHEDULING A MULTICLASS MAKE-TO-ORDER/-STOCK M/G/1 QUEUE

    Get PDF
    This paper develops a framework based on convex optimization and economic ideas to formulate and solve approximately a rich class of dynamic and stochastic resource allocation problems, fitting in a generic discrete-state multi-project restless bandit problem (RBP). It draws on the single-project framework in the author´s companion paper “Restless bandit marginal productivity indices I: Single-project case and optimal control of a make-to-stock M/G/1 queue”, based on characterization of a project´s marginal productivity index (MPI). Our framework significantly expands the scope of Whittle (1988)´s seminal approach to the RBP. Contributions include: (i) Formulation of a generic multi-project RBP, and algorithmic solution via single-project MPIs of a relaxed problem, giving a lower bound on optimal cost performance; (ii) a heuristic MPI-based hedging point and index policy; (iii) application of the MPI policy and bound to the problem of dynamic scheduling for a multiclass combined MTO/MTS M/G/1 queue with convex backorder and stock holding cost rates, under the LRA criterion; and (iv) results of a computational study on the MPI bound and policy, showing the latter´s near-optimality across the cases investigated.

    On Monotonicity and Propagation of Order Properties

    Full text link
    In this paper, a link between monotonicity of deterministic dynamical systems and propagation of order by Markov processes is established. The order propagation has received considerable attention in the literature, however, this notion is still not fully understood. The main contribution of this paper is a study of the order propagation in the deterministic setting, which potentially can provide new techniques for analysis in the stochastic one. We take a close look at the propagation of the so-called increasing and increasing convex orders. Infinitesimal characterisations of these orders are derived, which resemble the well-known Kamke conditions for monotonicity. It is shown that increasing order is equivalent to the standard monotonicity, while the class of systems propagating the increasing convex order is equivalent to the class of monotone systems with convex vector fields. The paper is concluded by deriving a novel result on order propagating diffusion processes and an application of this result to biological processes.Comment: Part of the paper is to appear in American Control Conference 201
    corecore