19 research outputs found

    High level coordination and decision making of a simulated robotic soccer team

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Learning by observation using Qualitative Spatial Relations

    Get PDF
    We present an approach to the problem of learning by observation in spatially-situated tasks, whereby an agent learns to imitate the behaviour of an observed expert, with no direct interaction and limited observations. The form of knowledge representation used for these observations is crucial, and we apply Qualitative Spatial-Relational representations to compress continuous, metric state-spaces into symbolic states to maximise the generalisability of learned models and minimise knowledge engineering. Our system self-configures these representations of the world to discover configurations of features most relevant to the task, and thus build good predictive models. We then show how these models can be employed by situated agents to control their behaviour, closing the loop from observation to practical implementation. We evaluate our approach in the simulated RoboCup Soccer domain and the Real-Time Strategy game Starcraft, and successfully demonstrate how a system using our approach closely mimics the behaviour of both synthetic (AI controlled) players, and also human-controlled players through observation. We further evaluate our work in Reinforcement Learning tasks in these domains, and show that our approach improves the speed at which such models can be learned

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper

    Deep learning based approaches for imitation learning.

    Get PDF
    Imitation learning refers to an agent's ability to mimic a desired behaviour by learning from observations. The field is rapidly gaining attention due to recent advances in computational and communication capabilities as well as rising demand for intelligent applications. The goal of imitation learning is to describe the desired behaviour by providing demonstrations rather than instructions. This enables agents to learn complex behaviours with general learning methods that require minimal task specific information. However, imitation learning faces many challenges. The objective of this thesis is to advance the state of the art in imitation learning by adopting deep learning methods to address two major challenges of learning from demonstrations. Firstly, representing the demonstrations in a manner that is adequate for learning. We propose novel Convolutional Neural Networks (CNN) based methods to automatically extract feature representations from raw visual demonstrations and learn to replicate the demonstrated behaviour. This alleviates the need for task specific feature extraction and provides a general learning process that is adequate for multiple problems. The second challenge is generalizing a policy over unseen situations in the training demonstrations. This is a common problem because demonstrations typically show the best way to perform a task and don't offer any information about recovering from suboptimal actions. Several methods are investigated to improve the agent's generalization ability based on its initial performance. Our contributions in this area are three fold. Firstly, we propose an active data aggregation method that queries the demonstrator in situations of low confidence. Secondly, we investigate combining learning from demonstrations and reinforcement learning. A deep reward shaping method is proposed that learns a potential reward function from demonstrations. Finally, memory architectures in deep neural networks are investigated to provide context to the agent when taking actions. Using recurrent neural networks addresses the dependency between the state-action sequences taken by the agent. The experiments are conducted in simulated environments on 2D and 3D navigation tasks that are learned from raw visual data, as well as a 2D soccer simulator. The proposed methods are compared to state of the art deep reinforcement learning methods. The results show that deep learning architectures can learn suitable representations from raw visual data and effectively map them to atomic actions. The proposed methods for addressing generalization show improvements over using supervised learning and reinforcement learning alone. The results are thoroughly analysed to identify the benefits of each approach and situations in which it is most suitable
    corecore