45,010 research outputs found

    Autonomous Vehicle Coordination with Wireless Sensor and Actuator Networks

    Get PDF
    A coordinated team of mobile wireless sensor and actuator nodes can bring numerous benefits for various applications in the field of cooperative surveillance, mapping unknown areas, disaster management, automated highway and space exploration. This article explores the idea of mobile nodes using vehicles on wheels, augmented with wireless, sensing, and control capabilities. One of the vehicles acts as a leader, being remotely driven by the user, the others represent the followers. Each vehicle has a low-power wireless sensor node attached, featuring a 3D accelerometer and a magnetic compass. Speed and orientation are computed in real time using inertial navigation techniques. The leader periodically transmits these measures to the followers, which implement a lightweight fuzzy logic controller for imitating the leader's movement pattern. We report in detail on all development phases, covering design, simulation, controller tuning, inertial sensor evaluation, calibration, scheduling, fixed-point computation, debugging, benchmarking, field experiments, and lessons learned

    Organic Farming in Europe by 2010: Scenarios for the future

    Get PDF
    How will organic farming in Europe evolve by the year 2010? The answer provides a basis for the development of different policy options and for anticipating the future relative competitiveness of organic and conventional farming. The authors tackle the question using an innovative approach based on scenario analysis, offering the reader a range of scenarios that encompass the main possible evolutions of the organic farming sector. This book constitutes an innovative and reliable decision-supporting tool for policy makers, farmers and the private sector. Researchers and students operating in the field of agricultural economics will also benefit from the methodological approach adopted for the scenario analysis

    Synthesized cooperative strategies for intelligent multi-robots in a real-time distributed environment : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    In the robot soccer domain, real-time response usually curtails the development of more complex Al-based game strategies, path-planning and team cooperation between intelligent agents. In light of this problem, distributing computationally intensive algorithms between several machines to control, coordinate and dynamically assign roles to a team of robots, and allowing them to communicate via a network gives rise to real-time cooperation in a multi-robotic team. This research presents a myriad of algorithms tested on a distributed system platform that allows for cooperating multi- agents in a dynamic environment. The test bed is an extension of a popular robot simulation system in the public domain developed at Carnegie Mellon University, known as TeamBots. A low-level real-time network game protocol using TCP/IP and UDP were incorporated to allow for a conglomeration of multi-agent to communicate and work cohesively as a team. Intelligent agents were defined to take on roles such as game coach agent, vision agent, and soccer player agents. Further, team cooperation is demonstrated by integrating a real-time fuzzy logic-based ball-passing algorithm and a fuzzy logic algorithm for path planning. Keywords Artificial Intelligence, Ball Passing, the coaching system, Collaborative, Distributed Multi-Agent, Fuzzy Logic, Role Assignmen

    A simple hybrid algorithm for improving team sport AI

    Get PDF
    In the very popular genre of team sports games defeating the opposing AI is the main focus of the gameplay experience. However the overall quality of these games is significantly damaged because, in a lot of cases, the opposition is prone to mistakes or vulnerable to exploitation. This paper introduces an AI system which overcomes this failing through the addition of simple adaptive learning and prediction algorithms to a basic ice hockey defence. The paper shows that improvements can be made to the gameplay experience without overly increasing the implementation complexity of the system or negatively affecting its performance. The created defensive system detects patterns in the offensive tactics used against it and changes elements of its reaction accordingly; effectively adapting to attempted exploitation of repeated tactics. This is achieved using a fuzzy inference system that tracks player movement, which greatly improves variation of defender positioning, alongside an N-gram pattern recognition-based algorithm that predicts the next action of the attacking player. Analysis of implementation complexity and execution overhead shows that these techniques are not prohibitively expensive in either respect, and are therefore appropriate for use in games

    An open learning environment for the diagnosis, assistance and evaluation of students based on artificial intelligence

    Get PDF
    The personalized diagnosis, assistance and evaluation of students in open learning environments can be a challenging task, especially in cases that the processes need to be taking place in real-time, classroom conditions. This paper describes the design of an open learning environment under development, designed to monitor the comprehension of students, assess their prior knowledge, build individual learner profiles, provide personalized assistance and, finally, evaluate their performance by using artificial intelligence. A trial test has been performed, with the participation of 20 students, which displayed promising results
    corecore