27 research outputs found

    Flexibility in MDE for scaling up from simple applications to real case studies: illustration on a Nuclear Power Plant

    Get PDF
    International audienceModel Driven Engineering provides powerful solutions for the development of User Interfaces. However, concepts and techniques are difficult to master and to apply: the threshold of use is said to be high, making designers and developers reluctant to use it. This paper investigates process model flexibility as a solution. We present three kinds of flexibility for improving design and development process models: (1) variability for equivalent choices, (2) granularability for several levels of details, (3) completeness for possibly optional and pre-defined reusable components. Flexibility decreases the threshold of use by reusability of knowledge, know-how and pieces of code. We illustrate these forms of flexibility on an industrial case study from the nuclear power plant domain. We explain how they are implemented in FlexiLab, a running prototype based on OSGi. The innovation is twofold: on one hand, the operationalization of flexibility; on the other hand, the jump from simple applications to real case studies thanks to flexibility

    Model-driven user interfaces for bioinformatics data resources: regenerating the wheel as an alternative to reinventing it

    Get PDF
    BACKGROUND: The proliferation of data repositories in bioinformatics has resulted in the development of numerous interfaces that allow scientists to browse, search and analyse the data that they contain. Interfaces typically support repository access by means of web pages, but other means are also used, such as desktop applications and command line tools. Interfaces often duplicate functionality amongst each other, and this implies that associated development activities are repeated in different laboratories. Interfaces developed by public laboratories are often created with limited developer resources. In such environments, reducing the time spent on creating user interfaces allows for a better deployment of resources for specialised tasks, such as data integration or analysis. Laboratories maintaining data resources are challenged to reconcile requirements for software that is reliable, functional and flexible with limitations on software development resources. RESULTS: This paper proposes a model-driven approach for the partial generation of user interfaces for searching and browsing bioinformatics data repositories. Inspired by the Model Driven Architecture (MDA) of the Object Management Group (OMG), we have developed a system that generates interfaces designed for use with bioinformatics resources. This approach helps laboratory domain experts decrease the amount of time they have to spend dealing with the repetitive aspects of user interface development. As a result, the amount of time they can spend on gathering requirements and helping develop specialised features increases. The resulting system is known as Pierre, and has been validated through its application to use cases in the life sciences, including the PEDRoDB proteomics database and the e-Fungi data warehouse. CONCLUSION: MDAs focus on generating software from models that describe aspects of service capabilities, and can be applied to support rapid development of repository interfaces in bioinformatics. The Pierre MDA is capable of supporting common database access requirements with a variety of auto-generated interfaces and across a variety of repositories. With Pierre, four kinds of interfaces are generated: web, stand-alone application, text-menu, and command line. The kinds of repositories with which Pierre interfaces have been used are relational, XML and object databases

    The Design and evaluation of the specification framework for user interface design

    Get PDF
    This thesis presentsthe design and evaluation of an interface specification meta-language(ISML) that has been developed to explicitly support metaphor abstractions in a model-based, user interface design framework. The application of metaphor to user interface design is widely accepted within the HCI community, yet despite this, there exists relatively little formal support for user interface design practitioners. With the increasing range and power of user interface technologies made widely available comes the opportunity for the designof sophisticated, new forms of interactive environments. The inter-disciplinary nature of HCI offers many approaches to user interface design that include views on tasks, presentationand dialogue architectures and various domain models. Notations and tools that support these views vary equally, ranging from craft-based approachesthrough to computational or tool- based support and formal methods. Work in these areas depicts gradual cohesion of a number of these design views, but do not currently explicitly specify the application of metaphorical concepts in graphical user interface design. Towards addressing this omission, ISML was developed based on (and extending) some existing model- based user interface design concepts. Abstractions of metaphor and other interface design views are captured in the ISML framework using the extensible mark-up language(XML). A six-month case study, developing the `Urban Shout Cast' application is used to evaluate ISML. Two groups of four software engineers developed a networked, multi-user, virtual radio-broadcasting environment. A qualitative analysis examines both how each group developed metaphor designs within the ISML framework and also their perceptions of its utility and practicality. Subsequent analysis on the specification data from both groups reveals aspects of the project's design that ISML captured and those that were missed. Finally, the extent to which ISML can currently abstract the metaphors used in the case study is assessed through the development of a unified `meta-object' model. The results of the case study show that ISML is capable of expressing many of the features of each group's metaphor design, as well as highlighting important design considerations during development. Furthermore, it has been shown, in principle, how an underlying metaphor abstraction can be mapped to two different implementations. Evaluation of the case study also includes important design lessons: ISML metaphor models can be both very large and difficult to separate from other design views, some of which are either weakly expressed or unsupported. This suggests that the appropriate mappings between design abstractions cannot always be easily anticipated, and that understanding the use of model-based specifications in user interface design projects remains a challenge to the HCI community

    Adaptive model-driven user interface development systems

    Get PDF
    Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague many software applications. Model-driven engineering formed the basis for most of the systems targeting the development of such UIs. An overview of these systems is presented and a set of criteria is established to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and highlighted the areas of promising improvement

    GAIML: A New Language for Verbal and Graphical Interaction in Chatbots

    Get PDF
    Natural and intuitive interaction between users and complex systems is a crucial research topic in human-computer interaction. A major direction is the definition and implementation of systems with natural language understanding capabilities. The interaction in natural language is often performed by means of systems called chatbots. A chatbot is a conversational agent with a proper knowledge base able to interact with users. Chatbots appearance can be very sophisticated with 3D avatars and speech processing modules. However the interaction between the system and the user is only performed through textual areas for inputs and replies. An interaction able to add to natural language also graphical widgets could be more effective. On the other side, a graphical interaction involving also the natural language can increase the comfort of the user instead of using only graphical widgets. In many applications multi-modal communication must be preferred when the user and the system have a tight and complex interaction. Typical examples are cultural heritages applications (intelligent museum guides, picture browsing) or systems providing the user with integrated information taken from different and heterogenous sources as in the case of the iGoogle™ interface. We propose to mix the two modalities (verbal and graphical) to build systems with a reconfigurable interface, which is able to change with respect to the particular application context. The result of this proposal is the Graphical Artificial Intelligence Markup Language (GAIML) an extension of AIML allowing merging both interaction modalities. In this context a suitable chatbot system called Graphbot is presented to support this language. With this language is possible to define personalized interface patterns that are the most suitable ones in relation to the data types exchanged between the user and the system according to the context of the dialogue

    The design and evaluation of the specification framework for user interface design

    Get PDF
    This thesis presentsthe design and evaluation of an interface specification meta-language(ISML) that has been developed to explicitly support metaphor abstractions in a model-based, user interface design framework. The application of metaphor to user interface design is widely accepted within the HCI community, yet despite this, there exists relatively little formal support for user interface design practitioners. With the increasing range and power of user interface technologies made widely available comes the opportunity for the designof sophisticated, new forms of interactive environments. The inter-disciplinary nature of HCI offers many approaches to user interface design that include views on tasks, presentationand dialogue architectures and various domain models. Notations and tools that support these views vary equally, ranging from craft-based approachesthrough to computational or tool- based support and formal methods. Work in these areas depicts gradual cohesion of a number of these design views, but do not currently explicitly specify the application of metaphorical concepts in graphical user interface design. Towards addressing this omission, ISML was developed based on (and extending) some existing model- based user interface design concepts. Abstractions of metaphor and other interface design views are captured in the ISML framework using the extensible mark-up language(XML). A six-month case study, developing the `Urban Shout Cast' application is used to evaluate ISML. Two groups of four software engineers developed a networked, multi-user, virtual radio-broadcasting environment. A qualitative analysis examines both how each group developed metaphor designs within the ISML framework and also their perceptions of its utility and practicality. Subsequent analysis on the specification data from both groups reveals aspects of the project's design that ISML captured and those that were missed. Finally, the extent to which ISML can currently abstract the metaphors used in the case study is assessed through the development of a unified `meta-object' model. The results of the case study show that ISML is capable of expressing many of the features of each group's metaphor design, as well as highlighting important design considerations during development. Furthermore, it has been shown, in principle, how an underlying metaphor abstraction can be mapped to two different implementations. Evaluation of the case study also includes important design lessons: ISML metaphor models can be both very large and difficult to separate from other design views, some of which are either weakly expressed or unsupported. This suggests that the appropriate mappings between design abstractions cannot always be easily anticipated, and that understanding the use of model-based specifications in user interface design projects remains a challenge to the HCI community.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Book reports

    Get PDF

    Interactive visualisation tools for supporting taxonomists working practice.

    Get PDF
    The necessity for scientists and others to use consistent terminology has recently beenregarded as fundamental to advancing scientific research, particularly where data fromdisparate sources must be shared, compared or integrated. One area where there aresignificant difficulties with the quality of collected data is the field of taxonomicdescription. Taxonomic description lies at the heart of the classification of organismsand communication of ideas of biodiversity. As part of their working practice,taxonomists need to gather descriptive data about a number of specimens on aconsistent basis for individual projects. Collecting semantically well-defined structureddata could improve the clarity and comparability of such data. No tools howevercurrently exist to allow taxonomists to do so within their working practice.Ontologies are increasingly used to describe and define complex domain data. As a partof related research an ontology of descriptive terminology for controlling the storageand use of flowering plant description data was developed.This work has applied and extended model-based user interface developmentenvironments to utilise such an ontology for the automatic generation of appropriatedata entry interfaces that support semantically well defined and structured descriptivedata. The approach taken maps the ontology to a system domain model, which ataxonomist can then specialise using their domain expertise, for their data entry needs asrequired for individual projects. Based on this specialised domain knowledge, thesystem automatically generates appropriate data entry interfaces that capture dataconsistent with the original ontology. Compared with traditional model-based userautomatic interface development environments, this approach also has the potential toreduce the labour requirements for the expert developer.The approach has also been successfully tested to generate data entry interfaces basedon an XML schema for the exchange of biodiversity datasets

    Modellbasierte Generierung von Benutzungsoberflächen

    Get PDF
    Die Arbeit stellt einen integrierten Gesamtprozess zur modellgetriebenen Softwareentwicklung von Benutzungsschnittstellen und Geschäftslogik vor. Dazu notwendige und unterstützende Deklarationsmodelle, sowie Modelltransformationen für dieses Verfahren, werden entwickelt und präsentiert. Weiterhin werden Meta-Modelle für Aufbau und Wartung eines HCI-Patternkatalogs vorgestellt und zur Erstellung eines solchen Kataloges benutzt. Die darin enthaltenen Einträge werden in Bezug auf Ihre softwaretechnische Komponentisierbarkeit untersucht und klassifiziert.The thesis presents an integrated model-driven approach for developing software. This approach supports the generation of user interfaces, as well as artifacts of business logic. Suitable meta models and model transformations are developed and explained. Secondly, this thesis dwells on the topic of HCI patterns. It is researched how such patterns may be classified, componentized and made use of in a model-driven process. This work eventually yields a pattern language, whose entries are declared using state-of-the-art model-driven technologies

    Interactive visualisation tools for supporting taxonomists working practice.

    Get PDF
    The necessity for scientists and others to use consistent terminology has recently beenregarded as fundamental to advancing scientific research, particularly where data fromdisparate sources must be shared, compared or integrated. One area where there aresignificant difficulties with the quality of collected data is the field of taxonomicdescription. Taxonomic description lies at the heart of the classification of organismsand communication of ideas of biodiversity. As part of their working practice,taxonomists need to gather descriptive data about a number of specimens on aconsistent basis for individual projects. Collecting semantically well-defined structureddata could improve the clarity and comparability of such data. No tools howevercurrently exist to allow taxonomists to do so within their working practice.Ontologies are increasingly used to describe and define complex domain data. As a partof related research an ontology of descriptive terminology for controlling the storageand use of flowering plant description data was developed.This work has applied and extended model-based user interface developmentenvironments to utilise such an ontology for the automatic generation of appropriatedata entry interfaces that support semantically well defined and structured descriptivedata. The approach taken maps the ontology to a system domain model, which ataxonomist can then specialise using their domain expertise, for their data entry needs asrequired for individual projects. Based on this specialised domain knowledge, thesystem automatically generates appropriate data entry interfaces that capture dataconsistent with the original ontology. Compared with traditional model-based userautomatic interface development environments, this approach also has the potential toreduce the labour requirements for the expert developer.The approach has also been successfully tested to generate data entry interfaces basedon an XML schema for the exchange of biodiversity datasets
    corecore