99 research outputs found

    Automated 3D burr detection in cast manufacturing using sparse convolutional neural networks

    Get PDF
    For automating deburring of cast parts, this paper proposes a general method for estimating burr height using 3D vision sensor that is robust to missing data in the scans and sensor noise. Specifically, we present a novel data-driven method that learns features that can be used to align clean CAD models from a workpiece database to the noisy and incomplete geometry of a RGBD scan. Using the learned features with Random sample consensus (RANSAC) for CAD to scan registration, learned features improve registration result as compared to traditional approaches by (translation error (Δ18.47 mm) and rotation error(Δ43∘)) and accuracy(35%) respectively. Furthermore, a 3D-vision based automatic burr detection and height estimation technique is presented. The estimated burr heights were verified and compared with measurements from a high resolution industrial CT scanning machine. Together with registration, our burr height estimation approach is able to estimate burr height similar to high resolution CT scans with Z-statistic value (z=0.279).publishedVersio

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Robotic contour tracking with adaptive feedforward control by fuzzy online tuning

    Get PDF
    Industrial robots have great importance in manufacturing. Typical uses of the robots are welding, painting, deburring, grinding, polishing and shape recovery. Most of these tasks such as grinding, deburring need force control to achieve high performance. These tasks involve contour following. Contour following is a challenging task because in many of applications the geometry physical of the targeted contour are unknown. In addition to that, achieving tasks as polishing, grinding and deburring requires small force and velocity tracking errors. In order to accomplish these tasks, disturbances have to be taken account. In this thesis the aim is to achieve contour tracking with using fuzzy online tuning. The fuzzy method is proposed in this thesis to adjust a feedforward force control parameter. In this technique, the varying feedforward control parameter compensates for disturbance effects. The method employs the chattering of control signal and the normal force and tangential velocity errors to adjust the control term. Simulations with the model of a direct drive planar elbow manipulator are used to last proposed technique

    Control of the interaction of a gantry robot end effector with the environment by the adaptive behaviour of its joint drive actuators

    Get PDF
    The thesis examines a way in which the performance of the robot electric actuators can be precisely and accurately force controlled where there is a need for maintaining a stable specified contact force with an external environment. It describes the advantages of the proposed research, which eliminates the need for any external sensors and solely depends on the precise torque control of electric motors. The aim of the research is thus the development of a software based control system and then a proposal for possible inclusion of this control philosophy in existing range of automated manufacturing techniques.The primary aim of the research is to introduce force controlled behaviour in the electric actuators when the robot interacts with the environment, by measuring and controlling the contact forces between them. A software control system is developed and implemented on a robot gantry manipulator to follow two dimensional contours without the explicit geometrical knowledge of those contours. The torque signatures from the electric actuators are monitored and maintained within a desired force band. The secondary aim is the optimal design of the software controller structure. Experiments are performed and the mathematical model is validated against conventional Proportional Integral Derivative (PID) control. Fuzzy control is introduced in the software architecture to incorporate a sophisticated control. Investigation is carried out with the combination of PID and Fuzzy logic which depend on the geometrical complexity of the external environment to achieve the expected results

    Adaptive Robot Framework: Providing Versatility and Autonomy to Manufacturing Robots Through FSM, Skills and Agents

    Get PDF
    207 p.The main conclusions that can be extracted from an analysis of the current situation and future trends of the industry,in particular manufacturing plants, are the following: there is a growing need to provide customization of products, ahigh variation of production volumes and a downward trend in the availability of skilled operators due to the ageingof the population. Adapting to this new scenario is a challenge for companies, especially small and medium-sizedenterprises (SMEs) that are suffering first-hand how their specialization is turning against them.The objective of this work is to provide a tool that can serve as a basis to face these challenges in an effective way.Therefore the presented framework, thanks to its modular architecture, allows focusing on the different needs of eachparticular company and offers the possibility of scaling the system for future requirements. The presented platform isdivided into three layers, namely: interface with robot systems, the execution engine and the application developmentlayer.Taking advantage of the provided ecosystem by this framework, different modules have been developed in order toface the mentioned challenges of the industry. On the one hand, to address the need of product customization, theintegration of tools that increase the versatility of the cell are proposed. An example of such tools is skill basedprogramming. By applying this technique a process can be intuitively adapted to the variations or customizations thateach product requires. The use of skills favours the reuse and generalization of developed robot programs.Regarding the variation of the production volumes, a system which permits a greater mobility and a faster reconfigurationis necessary. If in a certain situation a line has a production peak, mechanisms for balancing the loadwith a reasonable cost are required. In this respect, the architecture allows an easy integration of different roboticsystems, actuators, sensors, etc. In addition, thanks to the developed calibration and set-up techniques, the system canbe adapted to new workspaces at an effective time/cost.With respect to the third mentioned topic, an agent-based monitoring system is proposed. This module opens up amultitude of possibilities for the integration of auxiliary modules of protection and security for collaboration andinteraction between people and robots, something that will be necessary in the not so distant future.For demonstrating the advantages and adaptability improvement of the developed framework, a series of real usecases have been presented. In each of them different problematic has been resolved using developed skills,demonstrating how are adapted easily to the different casuistic

    A survey of robot manipulation in contact

    Get PDF
    In this survey, we present the current status on robots performing manipulation tasks that require varying contact with the environment, such that the robot must either implicitly or explicitly control the contact force with the environment to complete the task. Robots can perform more and more manipulation tasks that are still done by humans, and there is a growing number of publications on the topics of (1) performing tasks that always require contact and (2) mitigating uncertainty by leveraging the environment in tasks that, under perfect information, could be performed without contact. The recent trends have seen robots perform tasks earlier left for humans, such as massage, and in the classical tasks, such as peg-in-hole, there is a more efficient generalization to other similar tasks, better error tolerance, and faster planning or learning of the tasks. Thus, in this survey we cover the current stage of robots performing such tasks, starting from surveying all the different in-contact tasks robots can perform, observing how these tasks are controlled and represented, and finally presenting the learning and planning of the skills required to complete these tasks

    Robots in machining

    Get PDF
    Robotic machining centers offer diverse advantages: large operation reach with large reorientation capability, and a low cost, to name a few. Many challenges have slowed down the adoption or sometimes inhibited the use of robots for machining tasks. This paper deals with the current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control. Recent research addressing deburring, milling, incremental forming, polishing or thin wall machining is presented. We discuss various processes in which robots need to deal with significant process forces while fulfilling their machining task
    corecore