118,941 research outputs found

    Teaching MDE through the Formal Verification of Process Models

    Get PDF
    International audienceModel Driven Engineering (MDE) and formal methods (FM) play a key role in the development of Safety Critical Systems (SCS). They promote user oriented abstraction and formal specification using Domain Specific Modeling Languages (DSML), early Validation and formal Verification (V&V) using efficient dedicated technologies and Automatic Code and Documentation Generation. Their combined use allow to improve system qualities and reduce development costs. However, in most computer science curriculae, both domains are usually taught independently. MDE is associated to practical software engineering and FM to theoretical computer science. This contribution relates a course about MDE for SCS development that bridges the gap between these domains. It describes the content of the course and provides the lessons learned from its teaching. It focuses on early formal verification using model checking of a DSML for development process modeling. MDE technologies are illustrated both on language engineering for CASE tool development and on development process modeling. The case study also highlights the unification power of MDE as it does not target traditional executable software

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    Propuesta de un proceso de enseñanza-aprendizaje para la asignatura Diseño de Software como proceso de software

    Get PDF
    La cátedra Diseño de Software se dicta actualmente en 4º año de las carreras del Departamento de Informática de la Facultad de Ciencias Exactas, Físicas y Naturales (FCEFN) de la Universidad Nacional de San Juan (UNSJ). Esta materia se enfoca principalmente al Diseño Orientado a Objetos (DOO), brindando conceptos y conocimientos desarrollados en forma teórica y con un fuerte componente práctico, de todos los diagramas de modelado de software que provee el Lenguaje de Modelado Unificado (UML), con el fin de comprender acabadamente el objetivo que se persigue con cada uno de ellos y en qué casos es conveniente o útil aplicarlos. El presente trabajo se sustenta de la experiencia adquirida en la práctica aplicada para la enseñanza de DOO, utilizando UML para el modelado, donde las actividades prácticas abarcan desde el análisis hasta llegar a una propuesta de diseño de implementación. Se presenta un modelo de proceso de enseñanza aprendizaje, como proceso de software, y los artefactos utilizados para guiar al alumno en la resolución de un problema de desarrollo de software específico, utilizando para su especificación el lenguaje de metamodelado de procesos SPEM 2.0 y para generar el modelado del proceso de software la herramienta Eclipse Process Framework Composer (EPFC).The Software Design Chair is currently being taught in 4th year of the study programs offered by the Computing Science Department in the School of Hard, Physical and Natural Sciences (FCEFyN) of the National University of San Juan (UNSJ). This course mainly focuses on Object Oriented Design (OOD). It offers a theoretical development as well as a practical approach of the concepts and principles for all the software modeling diagrams provided by the Unified Modeling Language (UML). It aims at thoroughly understanding the objectives pursued by each model and in which cases they are more suitable or useful to be applied. The present paper is based on the experience gained through the practical activities applied to the teaching of OOD by using UML for Modeling as well as learning tasks ranging from its analysis to a proposal for an implementation design. In addition a model for the teaching-learning process is presented, as software process, with all the artifacts used to steer the student in the resolution of a specific software development problem. The language used for specification is the process meta-modeling language SPEM 2.0 and the tool to generate the software process modeling is Eclipse Process Framework Composer (EPFC).Facultad de Informátic
    • …
    corecore