14,353 research outputs found

    Tools of the Trade: A Survey of Various Agent Based Modeling Platforms

    Get PDF
    Agent Based Modeling (ABM) toolkits are as diverse as the community of people who use them. With so many toolkits available, the choice of which one is best suited for a project is left to word of mouth, past experiences in using particular toolkits and toolkit publicity. This is especially troublesome for projects that require specialization. Rather than using toolkits that are the most publicized but are designed for general projects, using this paper, one will be able to choose a toolkit that already exists and that may be built especially for one's particular domain and specialized needs. In this paper, we examine the entire continuum of agent based toolkits. We characterize each based on 5 important characteristics users consider when choosing a toolkit, and then we categorize the characteristics into user-friendly taxonomies that aid in rapid indexing and easy reference.Agent Based Modeling, Individual Based Model, Multi Agent Systems

    Logistics of Mathematical Modeling-Focused Projects

    Full text link
    This article addresses the logistics of implementing projects in an undergraduate mathematics class and is intended both for new instructors and for instructors who have had negative experiences implementing projects in the past. Project implementation is given for both lower and upper division mathematics courses with an emphasis on mathematical modeling and data collection. Projects provide tangible connections to course content which can motivate students to learn at a deeper level. Logistical pitfalls and insights are highlighted as well as descriptions of several key implementation resources. Effective assessment tools, which allowed me to smoothly adjust to student feedback, are demonstrated for a sample class. As I smoothed the transition into each project and guided students through the use of the technology, their negative feedback on projects decreased and more students noted how the projects had enhanced their understanding of the course topics. Best practices learned over the years are given along with project summaries and sample topics. These projects were implemented at a small liberal arts university, but advice is given to extend them to larger classes for broader use.Comment: 27 pages, no figures, 1 tabl

    Development of a MATLAB/Simulink - Arduino environment for experimental practices in control engineering teaching

    Get PDF
    This project presents the steps followed when implementing a platform based on MATLAB/Simulink and Arduino for the restoration of digital control practices. During this project, an Arduino shield has being designed. Along with this, a web page has also been created where all the material done during all this project is available and can be freely used. So anyone interested on doing a project can have a starting point instead of starting a project from scratch, which most of times this results hard to implement. Taking all this into account, the document is structured in the following manner. The first chapter talks about the hardware used and designed. The second one explains the software used and the configurations done on the laboratory’s PCs. After that, the web page Duino-Based Learning is explained, where you can find the five projects carried out in the "Control Automàtic" subject with their corresponding results. In this section too, as an additional research, the implemented indirect adaptive control will be explained, where the parameter estimation has been done by the Recursive Least Square algorithm. The last four sections before presenting the conclusions of the work, correspond to a satisfaction questionnaire done to the teachers that have used the setup, the costs and saves of the project, the environmental impact and the planning of the project respectively

    Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control

    Get PDF
    This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.Thèse financée par Brest Métropole Océan

    Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control

    Get PDF
    This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.Thèse financée par Brest Métropole Océan

    Using the Proteus virtual environment to train future IT professionals

    Get PDF
    Abstract. Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article
    corecore