15,169 research outputs found

    Teaching robots parametrized executable plans through spoken interaction

    Get PDF
    While operating in domestic environments, robots will necessarily face difficulties not envisioned by their developers at programming time. Moreover, the tasks to be performed by a robot will often have to be specialized and/or adapted to the needs of specific users and specific environments. Hence, learning how to operate by interacting with the user seems a key enabling feature to support the introduction of robots in everyday environments. In this paper we contribute a novel approach for learning, through the interaction with the user, task descriptions that are defined as a combination of primitive actions. The proposed approach makes a significant step forward by making task descriptions parametric with respect to domain specific semantic categories. Moreover, by mapping the task representation into a task representation language, we are able to express complex execution paradigms and to revise the learned tasks in a high-level fashion. The approach is evaluated in multiple practical applications with a service robot

    MaestROB: A Robotics Framework for Integrated Orchestration of Low-Level Control and High-Level Reasoning

    Full text link
    This paper describes a framework called MaestROB. It is designed to make the robots perform complex tasks with high precision by simple high-level instructions given by natural language or demonstration. To realize this, it handles a hierarchical structure by using the knowledge stored in the forms of ontology and rules for bridging among different levels of instructions. Accordingly, the framework has multiple layers of processing components; perception and actuation control at the low level, symbolic planner and Watson APIs for cognitive capabilities and semantic understanding, and orchestration of these components by a new open source robot middleware called Project Intu at its core. We show how this framework can be used in a complex scenario where multiple actors (human, a communication robot, and an industrial robot) collaborate to perform a common industrial task. Human teaches an assembly task to Pepper (a humanoid robot from SoftBank Robotics) using natural language conversation and demonstration. Our framework helps Pepper perceive the human demonstration and generate a sequence of actions for UR5 (collaborative robot arm from Universal Robots), which ultimately performs the assembly (e.g. insertion) task.Comment: IEEE International Conference on Robotics and Automation (ICRA) 2018. Video: https://www.youtube.com/watch?v=19JsdZi0TW

    Language-based sensing descriptors for robot object grounding

    Get PDF
    In this work, we consider an autonomous robot that is required to understand commands given by a human through natural language. Specifically, we assume that this robot is provided with an internal representation of the environment. However, such a representation is unknown to the user. In this context, we address the problem of allowing a human to understand the robot internal representation through dialog. To this end, we introduce the concept of sensing descriptors. Such representations are used by the robot to recognize unknown object properties in the given commands and warn the user about them. Additionally, we show how these properties can be learned over time by leveraging past interactions in order to enhance the grounding capabilities of the robot

    VirtualHome: Simulating Household Activities via Programs

    Full text link
    In this paper, we are interested in modeling complex activities that occur in a typical household. We propose to use programs, i.e., sequences of atomic actions and interactions, as a high level representation of complex tasks. Programs are interesting because they provide a non-ambiguous representation of a task, and allow agents to execute them. However, nowadays, there is no database providing this type of information. Towards this goal, we first crowd-source programs for a variety of activities that happen in people's homes, via a game-like interface used for teaching kids how to code. Using the collected dataset, we show how we can learn to extract programs directly from natural language descriptions or from videos. We then implement the most common atomic (inter)actions in the Unity3D game engine, and use our programs to "drive" an artificial agent to execute tasks in a simulated household environment. Our VirtualHome simulator allows us to create a large activity video dataset with rich ground-truth, enabling training and testing of video understanding models. We further showcase examples of our agent performing tasks in our VirtualHome based on language descriptions.Comment: CVPR 2018 (Oral
    • …
    corecore