10 research outputs found

    Teaching Nanotechnology by Introducing Crossbar-Based Architecture and Quantum-Dot Cellular Automata

    Get PDF
    The end of photolithography as the driver for Moore\u27s law is predicted within seven to twelve years and six different emerging technologies (mostly nanoscale) are expected to replace the current CMOS-based system integration paradigm. As nanotechnology is emerging, (1) there is a strong need for well-educated nanoscale systems engineers by industry, and (2) research and education efforts are also called to overcome numerous nanoscale systems issues. This paper is to propose a way to teach nanotechnology by introducing two emerging technologies: crossbar-based nanoarchitecture and quantum-dot cellular automata

    Integrating nano-logic into an undergraduate logic design course

    Get PDF
    The goal of this work is to motivate our students and enhance their ability to address newer logic blocks namely majority gates in the existing framework. We use a K-map based methodology to introduce a few novel nano-logic design concepts for the undergraduate logic design class. We want them to possess knowledge about a few fundamental abstracted logical behaviors of future nano-devices and their functionality which in turn would motivate them to further investigate these non-CMOS emerging devices, logics and architectures. This would augment critical thinking of the students where they apply the learnt knowledge to a novel/unfamiliar situation. We intend to augment the existing standard EE and CS courses by inserting K-map based knowledge modules on nano-logic structure for stimulating their interest without significant diversion from the course framework. Experiments with our students show that all the students were able to grasp the basic concept of majority logic synthesis and almost 63 of them had a deeper understanding of the synthesis algorithm demonstrated to them

    Integrating a nanologic knowledge module Into an undergraduate logic design course

    Get PDF
    This work discusses a knowledge module in an undergraduate logic design course for electrical engineering (EE) and computer science (CS) students, that introduces them to nanocomputing concepts. This knowledge module has a twofold objective. First, the module interests students in the fundamental logical behavior and functionality of the nanodevices of the future, which will motivate them to enroll in other elective courses related to nanotechnology, offered in most EE and CS departments. Second, this module can be used to let students analyze, synthesize, and apply their existing knowledge of the Karnaugh-map-based Boolean logic reduction scheme into a revolutionary design context with majority logic. Where many efforts focus on developing new courses on nanofabrication and even nanocomputing, this work is designed to augment the existing standard EE and CS courses by inserting knowledge modules on nanologic structures so as to stimulate student interest without creating a significant diversion from the course framework

    Performance analysis of fault-tolerant nanoelectronic memories

    Get PDF
    Performance growth in microelectronics, as described by Moore’s law, is steadily approaching its limits. Nanoscale technologies are increasingly being explored as a practical solution to sustaining and possibly surpassing current performance trends of microelectronics. This work presents an in-depth analysis of the impact on performance, of incorporating reliability schemes into the architecture of a crossbar molecular switch nanomemory and demultiplexer. Nanoelectronics are currently in their early stages, and so fabrication and design methodologies are still in the process of being studied and developed. The building blocks of nanotechnology are fabricated using bottom-up processes, which leave them highly susceptible to defects. Hence, it is very important that defect and fault-tolerant schemes be incorporated into the design of nanotechnology related devices. In this dissertation, we focus on the study of a novel and promising class of computer chip memories called crossbar molecular switch memories and their demultiplexer addressing units. A major part of this work was the design of a defect and fault tolerance scheme we called the Multi-Switch Junction (MSJ) scheme. The MSJ scheme takes advantage of the regular array geometry of the crossbar nanomemory to create multiple switches in the fabric of the crossbar nanomemory for the storage of a single bit. Implementing defect and fault tolerant schemes come at a performance cost to the crossbar nanomemory; the challenge becomes achieving a balance between device reliability and performance. We have studied the reliability induced performance penalties as they relate to the time (delay) it takes to access a bit, and the amount of power dissipated by the process. Also, MSJ was compared to the banking and error correction coding fault tolerant schemes. Studies were also conducted to ascertain the potential benefits of integrating our MSJ scheme with the banking scheme. Trade-off analysis between access time delay, power dissipation and reliability is outlined and presented in this work. Results show the MSJ scheme increases the reliability of the crossbar nanomemory and demultiplexer. Simulation results also indicated that MSJ works very well for smaller nanomemory array sizes, with reliabilities of 100% for molecular switch failure rates in the 10% or less range

    New Data Structures and Algorithms for Logic Synthesis and Verification

    Get PDF
    The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor (FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher circuit density at reduced costs. To keep pace with technology, EDA tools are challenged to handle both digital designs with growing functionality and device models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more complex physical design models, the logic abstraction of a transistor as a switch has not changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA tools are fine tuned for CMOS technology and the underlying design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS logic primitives will be the ultimate building blocks for digital systems in the next ten years, no evidence is provided that CMOS logic primitives are also the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the result quality, for example the performance of a digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer. With the aim to optimize these metrics, the accordance to a specific logic model is no longer important. Indeed, the key to the success of an EDA technique is the expressive power of the logic primitives handling and solving the problem, which determines the capability to reach better metrics. In this thesis, we investigate new logic primitives for electronic design automation tools. We improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. We develop synthesis tools exploiting the majority and biconditional expressiveness. Our tools show strong results as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce the best results for several public benchmarks. On top of the enhanced synthesis power, our methods are the natural and native logic abstraction for circuit design in emerging nanotechnologies, where majority and biconditional logic are the primitive gates for physical implementation. We accelerate formal methods by (i) studying properties of logic circuits and (ii) developing new frameworks for logic reasoning engines. We prove non-trivial dualities for the property checking problem in logic circuits. Our findings enable sensible speed-ups in solving circuit satisfiability. We develop an alternative Boolean satisfiability framework based on majority functions. We prove that the general problem is still intractable but we show practical restrictions that can be solved efficiently. Finally, we focus on reversible logic where we propose a new equivalence checking approach. We exploit the invertibility of computation and the functionality of reversible gates in the formulation of the problem. This enables one order of magnitude speed up, as compared to the state-of-the-art solution. We argue that new approaches to solve EDA problems are necessary, as we have reached a point of technology where keeping pace with design goals is tougher than ever

    Early growth technology analysis : case studies in solar energy and geothermal energy

    Get PDF
    Thesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 85-87).Public and private organizations try to forecast the future of technological developments and allocate funds accordingly. Based on our interviews with experts from MIT's Entrepreneurship Center, Sloan School of Management, and IBM, and review of literature, we found out that this important fund allocation process is dominated by reliance on expert opinions, which has important drawbacks alongside its advantages. In this Thesis, we introduce a data-driven approach, called early growth technology analysis, to technology forecasting that utilizes diverse information sources to analyze the evolution of promising new technologies. Our approach is based on bibliometric analysis, consisting of three key steps: extraction of related keywords from online publication databases, determining the occurrence frequencies of these keywords, and identifying those exhibiting rapid growth. Our proposal goes beyond the theoretical level, and is embodied in software that collects the required inputs from the user through a visual interface, extracts data from web sites on the fly, performs an analysis on the collected data, and displays the results. Compared to earlier software within our group, the new interface offers a much improved user experience in performing the analysis. Although these methods are applicable to any domain of study, this Thesis presents results from case studies on the fields of solar and geothermal energy. We identified emerging technologies in these specific fields to test the viability of our results. We believe that data-driven approaches, such as the one proposed in this Thesis, will increasingly be used by policy makers to complement, verify, and validate expert opinions in mapping practical goals into basic/applied research areas and coming up with technology investment decisions.by Ayse Kaya Firat.S.M.in Technology and Polic

    Products and Services

    Get PDF
    Today’s global economy offers more opportunities, but is also more complex and competitive than ever before. This fact leads to a wide range of research activity in different fields of interest, especially in the so-called high-tech sectors. This book is a result of widespread research and development activity from many researchers worldwide, covering the aspects of development activities in general, as well as various aspects of the practical application of knowledge

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore