3,071 research outputs found

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    Graduate Program Descriptions for 2006

    Get PDF
    Wright State University graduate program descriptions for the 2006 school year

    Graduate Program Descriptions for 2010-2011

    Get PDF
    Wright State University graduate program descriptions for the 2010-2011 school year. These program descriptions were used for 2011-2012 school year as well

    Computer Science 2019 APR Self-Study & Documents

    Get PDF
    UNM Computer Science APR self-study report and review team report for Spring 2019, fulfilling requirements of the Higher Learning Commission

    Graduate Catalogue 2015-2017

    Get PDF
    https://digitalscholarship.tnstate.edu/graduatecatalogues/1004/thumbnail.jp

    The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    Get PDF
    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval
    corecore