41 research outputs found

    A Model-Based Development and Verification Framework for Distributed System-on-Chip Architecture

    Get PDF
    The capabilities and thus, design complexity of VLSI-based embedded systems have increased tremendously in recent years, riding the wave of Moore’s law. The time-to-market requirements are also shrinking, imposing challenges to the designers, which in turn, seek to adopt new design methods to increase their productivity. As an answer to these new pressures, modern day systems have moved towards on-chip multiprocessing technologies. New architectures have emerged in on-chip multiprocessing in order to utilize the tremendous advances of fabrication technology. Platform-based design is a possible solution in addressing these challenges. The principle behind the approach is to separate the functionality of an application from the organization and communication architecture of hardware platform at several levels of abstraction. The existing design methodologies pertaining to platform-based design approach don’t provide full automation at every level of the design processes, and sometimes, the co-design of platform-based systems lead to sub-optimal systems. In addition, the design productivity gap in multiprocessor systems remain a key challenge due to existing design methodologies. This thesis addresses the aforementioned challenges and discusses the creation of a development framework for a platform-based system design, in the context of the SegBus platform - a distributed communication architecture. This research aims to provide automated procedures for platform design and application mapping. Structural verification support is also featured thus ensuring correct-by-design platforms. The solution is based on a model-based process. Both the platform and the application are modeled using the Unified Modeling Language. This thesis develops a Domain Specific Language to support platform modeling based on a corresponding UML profile. Object Constraint Language constraints are used to support structurally correct platform construction. An emulator is thus introduced to allow as much as possible accurate performance estimation of the solution, at high abstraction levels. VHDL code is automatically generated, in the form of “snippets” to be employed in the arbiter modules of the platform, as required by the application. The resulting framework is applied in building an actual design solution for an MP3 stereo audio decoder application.Siirretty Doriast

    Performance and area evaluations of processor-based benchmarks on FPGA devices

    Get PDF
    The computing system on SoCs is being long-term research since the FPGA technology has emerged due to its personality of re-programmable fabric, reconfigurable computing, and fast development time to market. During the last decade, uni-processor in a SoC is no longer to deal with the high growing market for complex applications such as Mobile Phones audio and video encoding, image and network processing. Due to the number of transistors on a silicon wafer is increasing, the recent FPGAs or embedded systems are advancing toward multi-processor-based design to meet tremendous performance and benefit this kind of systems are possible. Therefore, is an upcoming age of the MPSoC. In addition, most of the embedded processors are soft-cores, because they are flexible and reconfigurable for specific software functions and easy to build homogenous multi-processor systems for parallel programming. Moreover, behavioural synthesis tools are becoming a lot more powerful and enable to create datapath of logic units from high-level algorithms such as C to HDL and available for partitioning a HW/SW concurrent methodology. A range of embedded processors is able to implement on a FPGA-based prototyping to integrate the CPUs on a programmable device. This research is, firstly represent different types of computer architectures in modern embedded processors that are followed in different type of software applications (eg. Multi-threading Operations or Complex Functions) on FPGA-based SoCs; and secondly investigate their capability by executing a wide-range of multimedia software codes (Integer-algometric only) in different models of the processor-systems (uni-processor or multi-processor or Co-design), and finally compare those results in terms of the benchmarks and resource utilizations within FPGAs. All the examined programs were written in standard C and executed in a variety numbers of soft-core processors or hardware units to obtain the execution times. However, the number of processors and their customizable configuration or hardware datapath being generated are limited by a target FPGA resource, and designers need to understand the FPGA-based tradeoffs that have been considered - Speed versus Area. For this experimental purpose, I defined benchmarks into DLP / HLS catalogues, which are "data" and "function" intensive respectively. The programs of DLP will be executed in LEON3 MP and LE1 CMP multi-processor systems and the programs of HLS in the LegUp Co-design system on target FPGAs. In preliminary, the performance of the soft-core processors will be examined by executing all the benchmarks. The whole story of this thesis work centres on the issue of the execute times or the speed-up and area breakdown on FPGA devices in terms of different programs

    MULTI-OBJECTIVE DESIGN AUTOMATION FOR RECONFIGURABLE MULTI-PROCESSOR SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Co-Processor Approach for Efficient Java Execution in Embedded Systems

    Get PDF
    This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.Siirretty Doriast

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    High level design and control of adaptive multiprocessor system-on-chips

    Get PDF
    The design of modern embedded systems is getting more and more complex, as more func- tionality is integrated into these systems. At the same time, in order to meet the compu- tational requirements while keeping a low level power consumption, MPSoCs have emerged as the main solutions for such embedded systems. Furthermore, embedded systems are be- coming more and more adaptive, as the adaptivity can bring a number of benefits, such as software flexibility and energy efficiency. This thesis targets the safe design of such adaptive MPSoCs. First, each system configuration must be analyzed concerning its functional and non- functional properties. We present an abstract design and analysis framework, which allows for faster and cost-effective implementation decisions. This framework is intended as an intermediate reasoning support for system level software/hardware co-design environments. It can prune the design space at its largest, and identify candidate design solutions in a fast and efficient way. In the framework, we use an abstract clock-based encoding to model system behaviors. Different mapping and scheduling scenarios of applications on MPSoCs are analyzed via clock traces representing system simulations. Among properties of interest are functional behavioral correctness, temporal performance and energy consumption. Second, the reconfiguration management of adaptive MPSoCs must be addressed. We are specially interested in MPSoCs implemented on reconfigurable hardware architectures (i.e., FPGA fabrics), which provide a good flexibility and computational efficiency for adap- tive MPSoCs. We propose a general design framework based on the discrete controller syn- thesis (DCS) technique to address this issue. The main advantage of this technique is that it allows the automatic controller synthesis w.r.t. a given specification of control objectives. In the framework, the system reconfiguration behavior is modeled in terms of synchronous parallel automata. The reconfiguration management computation problem w.r.t. multiple objectives regarding e.g., resource usages, performance and power consumption is encoded as a DCS problem. The existing BZR programming language and Sigali tool are employed to perform DCS and generate a controller that satisfies the system requirements. Finally, we investigate two different ways of combining the two proposed design frame- works for adaptive MPSoCs. Firstly, they are combined to construct a complete design flow for adaptive MPSoCs. Secondly, they are combined to present how the designed run-time manager by the second framework can be integrated into the first framework so that high level simulations can be performed to assess the run-time manager.La conception de systèmes embarqués modernes est de plus en plus complexe, car plus de fonctionnalités sont intégrées dans ces systèmes. En même temps, afin de répondre aux exigences de calcul tout en conservant une consommation d'énergie de faible niveau, MPSoCs sont apparus comme les principales solutions pour tels systèmes embarqués. En outre, les systèmes embarqués sont de plus en plus adaptatifs, comme l’adaptabilité peut apporter un certain nombre d'avantages, tels que la flexibilité du logiciel et l'efficacité énergétique. Cette thèse vise la conception sécuritaire de ces MPSoCs adaptatifs. Tout d'abord, chaque configuration de système doit être analysée en ce qui concerne ses propriétés fonctionnelles et non fonctionnelles. Nous présentons un cadre abstraite de conception et d’analyse qui permet des décisions d’implémentation plus rapide et plus rentable. Ce cadre est conçu comme un support de raisonnement intermédiaire pour les environnements de co-conception de logiciel / matériel au niveau de système. Il peut élaguer l'espace de conception à sa plus grande portée, et identifier les candidats de solutions de conception de manière rapide et efficace. Dans ce cadre, nous utilisons un codage basé sur l’horloge abstrait pour modéliser les comportements du système. Différents scénarios d'applications de mapping et de planification sur MPSoCs sont analysés via les traces d'horloge qui représentent les simulations du système. Les propriétés d'intérêt sont l’exactitude du comportement fonctionnel, la performance temporelle et la consommation d'énergie. Deuxièmement, la gestion de la reconfiguration de MPSoCs adaptatifs doit être abordée. Nous sommes particulièrement intéressés par les MPSoCs implémentés sur des architectures reconfigurables de hardware (ex. FPGA tissus) qui offrent une bonne flexibilité et une efficacité de calcul pour les MPSoCs adaptatifs. Nous proposons un cadre général de conception basésur la technique de la synthèse de contrôleurs discrets (SCD) pour résoudre ce problème. L’avantage principal de cette technique est qu'elle permet une synthèse d'un contrôleur automatique vis-à-vis d’une spécification donnée des objectifs de contrôle. Dans ce cadre, le comportement de reconfiguration du système est modélisé en termes d'automates synchrones en parallèle. Le problème de calcul de la gestion reconfiguration vis-à-vis de multiples objectifs concernant, par exemple, les usages des ressources, la performance et la consommation d’énergie est codé comme un problème de SCD . Le langage de programmation BZR existant et l’outil Sigali sont employés pour effectuer SCD et générer un contrôleur qui satisfait aux exigences du système. Finalement, nous étudions deux façons différentes de combiner les deux cadres de conception proposées pour MPSoCs adaptatifs. Tout d'abord, ils sont combinés pour construire un flot de conception complet pour MPSoCs adaptatifs. Deuxièmement, ils sont combinés pour présenter la façon dont le gestionnaire d'exécution conçu dans le second cadre peut être intégré dans le premier cadre de sorte que les simulations de haut niveau peuvent être effectuées pour évaluer le gestionnaire d'exécution

    Pervasive handheld computing systems

    Get PDF
    The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems

    AXMEDIS 2008

    Get PDF
    The AXMEDIS International Conference series aims to explore all subjects and topics related to cross-media and digital-media content production, processing, management, standards, representation, sharing, protection and rights management, to address the latest developments and future trends of the technologies and their applications, impacts and exploitation. The AXMEDIS events offer venues for exchanging concepts, requirements, prototypes, research ideas, and findings which could contribute to academic research and also benefit business and industrial communities. In the Internet as well as in the digital era, cross-media production and distribution represent key developments and innovations that are fostered by emergent technologies to ensure better value for money while optimising productivity and market coverage
    corecore